INTRODUCTION

The dinoflagellate *Hematodinium perezi* is a virulent parasite of the blue crab *Callinectes sapidus* in North America (Shields & Overstreet 2007), where the prevalence of infection is often as high as 30% and can approach 100%. The mortality rate for infected crabs is also high: a study with captive individuals found 87% mortality after 40 d (Shields & Squyars 2000). Not surprisingly, outbreaks of *H. perezi* are considered to be a major factor in regional declines of blue crab fisheries (Lee & Frischer 2004). Symptoms of infection consist of lethargy and changes in hemolymph, including a decline in the number of hemocytes, reduced clotting ability, and discoloration (Shields & Squyars 2000, Shields & Overstreet 2007).

Surveys of infection by *H. perezi* in blue crabs typically report the prevalence of infection (percent-
age of infected individuals) and occasionally the average intensity of infection (percentage of cells in the hemolymph that are parasites). Both prevalence and intensity vary seasonally and are correlated with salinity and temperature, although there is regional variation in these relationships (Messick & Shields 2000, Gandy et al. 2015). Infection has been observed less frequently in waters with salinities below 11 ppt (Messick & Shields 2000), while severe outbreaks are often associated with high salinities following droughts (Lee & Frischer 2004, Parmenter et al. 2013, Gandy et al. 2015). In all of the previous surveys for H. perezi that included blue crabs from Louisiana, USA, none detected the pathogen in Louisiana (Messick & Shields 2000, Pagenkopp Lohan et al. 2013, Rogers et al. 2015a,b) although infected crabs have been reported from the Gulf coasts of Texas, Florida and Mississippi, USA (Newman & Johnson 1975, Messick & Shields 2000, Shields & Overstreet 2007, Gandy et al. 2015). The relatively low salinities of Louisiana’s inshore waters, combined with limited sampling from higher salinity offshore habitats could explain the apparent absence of H. perezi in Louisiana. However, critical stages of the blue crab’s life cycle take place offshore, where salinities tend to be higher. Female blue crabs migrate seaward to spawn because larvae require higher salinities for development (San-doz & Rogers 1944). Larvae remain offshore for 4–6 wk before they metamorphose to megalopae and begin to migrate inshore where they settle. Thus, even if H. perezi does not infect blue crabs in Louisiana’s low salinity habitats, it could have significant impacts on reproductive females and larvae in offshore habitats. In the only study that we are aware of in which decapod larvae were tested for the presence of Hematodinium, i.e. Hamilton et al. (2011), prevalence of ~12–15% was reported throughout the summer for the larvae of both langoustines Nephrops norvegicus and unidentified crab species from the Clyde Sea in Scotland.

The present study investigates the possibility that H. perezi occurs in blue crabs in Louisiana but mainly in offshore habitats with higher salinities. We detected DNA of H. perezi in tissues of juvenile and adult crabs from offshore shoals as well as in megalopae settling in low salinity marshes. To our knowledge, these are the first reports of the presence of H. perezi from blue crabs in Louisiana.

MATERIALS AND METHODS

Sample collection

Blue crabs were collected during August 2014 in bottom trawls from 3 offshore shoal locations: St. Bernard Shoals, Ship Shoal, and the Tiger-Trinity Shoals Complex (Fig. 1). Trawl transects consisted of 30 min tows with a 7.3 m net pulled at ~3 knots. Size (carapace width from point to point) and weight were measured for each crab, and tissues (muscle, hepatopancreas, and ovary) were removed and freeze-dried. Crabs were collected from inshore habitats throughout the summer of 2014 with crab pots and by handline fishing at 7 coastal locations: Grand Isle, LUMCON, Marsh Island, Freshwater City, Rocke-feller Wildlife Refuge, Rutherford Beach Culvert, and Lake Calcasieu (Fig. 1). For these crabs, 1 ml of hemolymph was drained from the cardiac sinus with 100 µl of sterile Soderhall and Smith’s formulation added as an anticoagulant; the second walking leg on the right side was removed with forceps, and both samples were preserved in pre-chilled 95% ethanol at 4°C. Settling megalopae were collected from 4 locations: Grand Isle, LUMCON, Freshwater City, and Rockefeller Wildlife Refuge (Fig. 1) in 2010, 2013, 2014, and 2015. At each location, 5 hog-hair collectors were deployed for ~24 h, after which these passive collectors were rinsed with ambient seawater. In addition, a 253 µm plankton net (Wildco) was towed between 3 and 5 times over a total distance of ~200 m. Both types of samples were washed on a 200 µm filter with ambient seawater, and all Callinectes sapidus megalopae were individually removed while still alive. The megalopae were then washed a second time with ambient seawater before being preserved whole in pre-chilled 95% ethanol at 4°C. Spot measurements of salinity and water temperature were taken at the time of each collection.
DNA extraction and detection of Hematodinium perezi DNA

DNA initially was extracted from ~2 mg of freeze-dried muscle tissue, ~200 µl of preserved hemolymph, or from whole ethanol-preserved megalopae using NucleoSpin® 96 Tissue Kits (Machery-Nagel) with an epMotion 5075 TMX liquid handling workstation (Eppendorf) following the manufacturer’s protocol. The presence of DNA of *H. perezi* was detected by PCR amplification of a portion of the 18s ribosomal RNA gene using the primers Hemat-F-18S and Hemat-R-18S developed by Friedman et al. (2009). For samples in which DNA of *H. perezi* was detected, DNA was subsequently extracted from hepatopancreas, ovary and, where available, egg-mass tissue using the same protocol. DNA concentrations were determined with a Nanodrop spectrophotometer (Thermo Scientific).

PCR reactions were in 15 µl with 1x AmpliTaq Gold® PCR Buffer (Applied Biosystems), 2.5 mM MgCl₂, (1 mM) dNTPs, (1.2 µM) of each forward and reverse primer, 0.6 units of AmpliTaq® Gold (Applied Biosystems), 20 ng of DNA, and Milli-Q® water. PCR conditions were as follows: 95°C for 5 min, then 40 cycles of 96°C for 15 s, 56°C for 30 s, 72°C for 45 s, and lastly 72°C for 10 min. Positive and negative controls were included in all reactions. PCR products were electrophoresed on 2% agarose gels with 0.05% ethidium bromide and visualized on a Molecular Imager® Gel Doc™ XR system (Bio Rad).

RESULTS

Among the 54 blue crabs collected from offshore shoals in August 2014, DNA of *Hematodinium perezi* was detected in 3, an overall prevalence of 5.6% (Table 1). All 3 were adult females (1 ovigerous) from St. Bernard Shoals, with point-to-point carapace widths ranging from 130 to 157 mm. In each of these crabs, the DNA of *H. perezi* was detected in muscle and hepatopancreas tissues but not in ovary tissues or in the eggs of the ovigerous female. The PCR prevalence of *H. perezi* for crabs from St. Bernard Shoals (20%) was significantly different from the zero prevalence for crabs from Ship Shoal and the Tiger-Trinity Shoals Complex (p = 0.04; 2-tailed Fisher’s exact test; Table 1). DNA of *H. perezi* was not detected among the 262 juvenile and adult blue crabs collected from coastal marsh locations (Table 1). Prevalence of *H. perezi* DNA from crabs at the 7 coastal locations was significantly different than for crabs from the 3 offshore locations (p = 0.0047; 2-tailed Fisher’s exact test). Among the 582 settling megalopae, DNA of *H. perezi* was detected in 65 (11.2%), with prevalence among individual collections ranging from 0 to 35% (Table 2). Prevalence in megalopae was higher in 2014 than 2010, 2013, or 2015 ($\chi^2 = 26.734, df = 3, p < 0.001$; Table 2), and higher in collections from Grand Isle than from other locations ($\chi^2 = 13.211, df = 3, p = 0.004$; Table 2).

Table 1. Summary information for adult/juvenile blue crabs collected from the 7 coastal and 3 offshore shoaling areas in Louisiana, USA, including location, date of collection in 2014, latitude (Lat.), longitude (Long.), salinity, temperature, size range, sample size (N), number positive (Np), and prevalence (Prev.)

<table>
<thead>
<tr>
<th>Location</th>
<th>Date (mo/d)</th>
<th>Lat. (°N)</th>
<th>Long. (°E)</th>
<th>Salinity (ppt)</th>
<th>Temp. (°C)</th>
<th>Size range (mm)</th>
<th>N</th>
<th>Np</th>
<th>Prev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Isle (GIL)</td>
<td>8/1</td>
<td>29.24</td>
<td>90.00</td>
<td>22</td>
<td>30</td>
<td>115–170</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LUMCON (LUM)</td>
<td>7/18</td>
<td>29.25</td>
<td>90.66</td>
<td>7</td>
<td>28</td>
<td>106–180</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marsh Island (MIL)</td>
<td>7/16</td>
<td>29.58</td>
<td>91.88</td>
<td>15</td>
<td>29</td>
<td>110–183</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Freshwater City</td>
<td>6/16, 6/30</td>
<td>29.55</td>
<td>92.31</td>
<td>6.3</td>
<td>28.5</td>
<td>63–200</td>
<td>57</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(FWC)</td>
<td>7/29 & 8/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockefeller Wildlife</td>
<td>6/16, 6/30</td>
<td>29.71</td>
<td>92.77</td>
<td>7</td>
<td>29.7</td>
<td>98–175</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Refuge (RWR)</td>
<td>8/7, & 8/12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutherford Beach</td>
<td>6/11, 6/30 & 8/7</td>
<td>29.78</td>
<td>93.13</td>
<td>10</td>
<td>30</td>
<td>50–172</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Culvert (RBC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Calcasieu (CAL)</td>
<td>6/10, 7/8</td>
<td>29.84</td>
<td>93.32</td>
<td>15</td>
<td>28</td>
<td>88–182</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coastal total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Offshore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Bernard (STB)</td>
<td>8/18</td>
<td>29.54</td>
<td>88.11</td>
<td>36</td>
<td>24.1</td>
<td>130–174</td>
<td>15</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Ship (SHP)</td>
<td>8/20</td>
<td>28.90</td>
<td>91.02</td>
<td>29.6</td>
<td>30.2</td>
<td>162–169</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tiger-Trinity Shoals</td>
<td>8/21</td>
<td>29.25</td>
<td>92.17</td>
<td>30.6</td>
<td>29.6</td>
<td>86–179</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Complex (TTS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td>3</td>
<td>5.6</td>
</tr>
</tbody>
</table>
DISCUSSION

The most significant finding of this study is evidence that the parasitic dinoflagellate *Hematodinium perezi* occurs in blue crabs in Louisiana, as it does elsewhere along the Gulf of Mexico and Atlantic coasts of North America. To our knowledge these are the first reports of *H. perezi* in blue crabs from Louisiana. Our findings agreed with those of previous studies that did not detect this pathogen in blue crabs from Louisiana’s coastal marshes. *H. perezi* appears to require salinities above 11 ppt (Messick & Shields 2000, Shields & Overstreet 2007, Coffey et al. 2012); salinities in the coastal marshes of Louisiana are often below 11 ppt (Boesch et al. 1994) but generally higher offshore (Brown 2015). The distribution of infected adults is consistent with a negative effect of low salinities on *H. perezi* in Louisiana’s marshes that does not fully extend to higher salinity offshore habitats. Alternatively, the DNA-positive females that we collected from St. Bernard Shoals in Louisiana could have been infected on the coast of Mississippi, where salinities are higher, and subsequently migrated to St. Bernard Shoals. The migration of blue crabs in the Gulf of Mexico could thus be important in the spread of *H. perezi*. Although infected megalopae were collected in lower salinity marshes, they would have recently encountered higher salinities during their larval phase. A potentially confounding factor in our study is collection method. Crabs were collected from offshore shoals by trawls but in baited traps from marshes. Traps could be less effective than trawls in collecting crabs that have become lethargic as the result of infection by *H. perezi*.

The overall prevalence of *H. perezi* among blue crabs sampled from the Gulf coast of Louisiana was low in comparison to values reported for many other locations. For instance, Gandy et al. (2015) reported prevalence of *H. perezi* in Jacksonville and Panama City, Florida, reached 63 and 68%, respectively, during winter. Messick & Shields (2000) found a cyclic pattern in prevalence from 1992 to 1997 in blue crabs from the lower Chesapeake Bay, with ~90% infected in late-fall peaks. However, it should not be concluded that *H. perezi* has little impact on blue crabs in Louisiana. Apart from the limited sampling (restricted to summer) on which this report is based, the prevalence of *H. perezi* must be considered in relation to other factors. The prevalence detected is the fraction of individuals that have encountered *H. perezi* but have not died. If the mortality rate is high and death occurs quickly, prevalence represents only a small fraction of all those that may become infected and die. In captive crabs, *H. perezi* kills the majority of infected individuals within 6 wk (Shields & Squyars 2000, Shields et al. 2015). Furthermore, high rates of infection for females spawning on offshore shoals and early life stages prior to settlement could have disproportionately large demographic impacts. Gelpi et al. (2009) showed that offshore spawning female crabs have the potential to spawn 7 times in a spawning season with an average of 2.5 million larvae released per spawn.

Blue crabs support a fishery in Louisiana that accounts for ~80% of hard crab production in the Gulf of Mexico, totaling ~43 million US$ yr⁻¹ (Perry & VanderKooy 2015). Our findings suggest that infection by *H. perezi* should be a concern for the management of the blue crab fishery in Louisiana and should also be recognized as a factor that could be

<table>
<thead>
<tr>
<th>Location</th>
<th>Lat. °N</th>
<th>Long. °E</th>
<th>Date (mo/d/yr)</th>
<th>Salinity (ppt)</th>
<th>Temp. °C</th>
<th>N</th>
<th>Np</th>
<th>Prev. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIL</td>
<td>29.24</td>
<td>90.00</td>
<td>7/31/2010</td>
<td>12</td>
<td>30</td>
<td>35</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/31/2013</td>
<td>18</td>
<td>32</td>
<td>38</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/1/2014</td>
<td>22</td>
<td>29.5</td>
<td>43</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/18/2015</td>
<td>12</td>
<td>30.5</td>
<td>40</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>156</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>LUM</td>
<td>29.25</td>
<td>90.66</td>
<td>8/29/2010</td>
<td>4</td>
<td>33</td>
<td>36</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/21/2013</td>
<td>18</td>
<td>30.5</td>
<td>39</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7/18/2014</td>
<td>7</td>
<td>28.5</td>
<td>37</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/16/2015</td>
<td>10</td>
<td>33.5</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>152</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>FWC</td>
<td>29.55</td>
<td>92.31</td>
<td>8/1/2010</td>
<td>20</td>
<td>32</td>
<td>36</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/25/2013</td>
<td>22</td>
<td>34</td>
<td>45</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/12/2014</td>
<td>10</td>
<td>29</td>
<td>39</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/11/2015</td>
<td>19</td>
<td>31.5</td>
<td>32</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>152</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>RWR</td>
<td>29.71</td>
<td>92.77</td>
<td>8/9/2010</td>
<td>17</td>
<td>32</td>
<td>36</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/25/2013</td>
<td>22</td>
<td>34</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/12/2014</td>
<td>0</td>
<td>29</td>
<td>38</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/11/2015</td>
<td>16</td>
<td>32</td>
<td>35</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>122</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Louisiana total</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>582</td>
<td>65</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
amplified by climate change and other anthropogenic disturbances. Ongoing and planned projects intended to preserve and restore Louisiana's coastline make use of large-scale hydrological diversions and sediment mining from offshore shoals (Stone et al. 2004, Moore et al. 2014). Reduction of the shoals, along with the encroachment of hypoxic zones (Bianchi et al. 2010), will reduce critical spawning areas for female blue crabs (Gelpi et al. 2009, 2013, Condrey & Gelpi 2010) and concentrate them in a smaller area where they could be more vulnerable to localized outbreaks by H. perezi. Conversely, freshwater and sediment diversions also have the potential to reduce salinity, which could hinder the growth and establishment of H. perezi.

Another important finding from our study was that blue crab post-larvae that tested positive for DNA of H. perezi were found at multiple locations in each of the 4 years of sampling, which suggests that H. perezi is endemic to the region rather than occurring episodically. We also detected significant interannual variation in prevalence for settling megalopae at individual locations. This variation could be related to environmental conditions at the site of settlement, differences in exposure to H. perezi prior to settlement, or differences in rates of pre-settlement mortality. At present, we can only speculate about where and when megalopae become infected or how the probability of infection might depend on the particular trajectory a larva follows from spawning site to settlement site. These possibilities should be investigated, as infection of offshore larvae could be both a significant source of mortality as well as a mechanism for rapid spread of disease over large areas. The overall prevalence of H. perezi detected in blue crab post-larvae (11.2%) was just below the range of 12–15% reported by Hamilton et al. (2011) for unidentified crab larvae from the Clyde Sea. The absence of crabs with detectable H. perezi in marshes as documented in this study and others (Messick & Shields 2000, Pagenkopp Lohan et al. 2013, Rogers et al. 2015a,b) could be explained by a low survival rate for megalopae impacted by H. perezi, a lack of transmission in low salinity waters, elimination of the parasite in low salinity habitats or a combination of these mechanisms. More work is needed to assess the importance of H. perezi in early life stages of the blue crab.

Our results highlight the importance of considering the environmental tolerances of a pathogen in relation to its host’s life history when assessing the pathogen’s potential to cause disease. Currently, ~80% of all hard crabs produced in the Gulf of Mexico come from Louisiana. Infection of blue crabs by H. perezi in higher salinity waters represents an unaccounted threat to this profitable fishery, especially as it is likely to have a large impact on spawning females. Additional surveys are needed to determine the spatial and temporal extent of the H. perezi range in Louisiana, as well estimates of mortality for all affected life stages. A better understanding also is needed of anthropogenic factors that are likely to change the disease ecology of Louisiana blue crabs.

Acknowledgements. This research was made possible in part by grants from The Gulf of Mexico Research Initiative (GRI-013 and GoMR2012-II-523), Louisiana Department of Wildlife & Fisheries—S14000, and by a University of Louisiana at Lafayette Doctoral Fellowship to T.J.S. Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: R2.x214.000:004). We thank Bree Yednock, Nicholas Keeney, Roxi Di Mauro, Azure Bevington, Joshua Latino, Katherine Ellis and Matilda Elgood Field for assistance with sample collection and Jeffery Shields and Joe Pitula for providing DNA from Hematodinium perezi.

LITERATURE CITED

- Gelpi C, Condrey RE, Fleeger JW, Dubois SF (2009) Discovery, evaluation, and implications of blue crab, Cal-

Editorial responsibility: Dieter Steinhagen, Hannover, Germany

*Submitted: October 26, 2015; Accepted: April 8, 2016
Proofs received from author(s): May 30, 2016*