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ABSTRACT

The estimation of gene flow from the distribution of genetic markers in populations
requires an indirect approach. Gene flow parameters are defined by demographic
models, and population genetic models provide the link between these parameters
and the distributions of genetic markers. Following the introduction of allozyme
methods in the 1960s, a standard approach to the estimation of gene flow was
developed. Wright’s island model of population structure was used to relate the
distribution of allozyme alleles in populations toNem, the product of the effective
population size and the rate of migration.

Alternative strategies for the estimation of gene flow have been developed us-
ing different genetic markers, different models of demography and population
genetics, and different methods of parameter estimation. No alternative strategy
now available is clearly superior to the standard approach based on Wright’s
model and allozyme markers. However, this may soon change as methods are
developed that fully utilize the genealogical relationships of DNA sequences.
At present, alternative strategies do fill important needs. They can provide inde-
pendent estimates of gene flow, measure different components of gene flow, and
detect historical changes in population structure.

1The US government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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INTRODUCTION

In the late 1960s, surveys of allozyme variation in natural populations set a new
direction for studies of gene flow (61–65). Wright’s analysis of nonrandom
mating provided a quantitative relationship between his measure of population
subdivision,FST, and the two parameters: population size,N, and rate of mi-
gration,m (127, 130–133). BecauseFST can be interpreted as the standardized
variance in the frequency of an allele among populations (132), it could be
readily estimated from allozyme data. A standard approach to quantifying gene
flow among populations was put into practice, using allozyme markers to esti-
mateFST and Wright’s island model (127, 129) to transform estimates ofFST

into estimates ofNm(95, 97). This approach is considered an indirect method
(95) for the estimation of gene flow, because population genetic models are
required to infer the magnitude of gene flow from its effects on the distributions
of genetic markers. Throughout this review, I refer toFST analysis of allozyme
data as theFST-allozyme approach.

TheFST-allozyme approach has been widely applied to natural populations
of plants, animals, and microorganisms. Its many advantages explain its contin-
ued use. Allozyme surveys require relatively little expense, time, or specialized
laboratory equipment, and they can be successfully carried out for most species
(63). The theoretical basis of this approach is well established, which has led
to progressive refinements in howFST is estimated (21, 102, 124). However,
there are compelling reasons for investigating alternative strategies. First, it is
difficult to directly test the reliability ofNmestimates. Our confidence in them
rests largely on their robustness under diverse conditions in theoretical models
(70, 95, 97, 102). Empirical tests such as comparisons with mark-and-recapture
estimates of dispersal are at best ambiguous. Indirect methods estimate the cu-
mulative effects of gene flow, acting over all temporal and spatial scales. In
contrast, direct estimates of gene flow apply only to the interval of time and
space over which observations are made (95). Alternative strategies are also
needed to better utilize new types of data now available to population geneti-
cists. A shift in emphasis from classical Mendelian alleles to DNA sequences
has changed the way population genetic variation is described. DNA sequences
represent a more diverse set of genetic markers than allozymes, and we now
have the tools to survey them in natural populations (68). It is also possible
to infer genealogical relationships among DNA sequences (4, 62). Interpreta-
tion of these relationships has led to the development of coalescent models
(43, 53, 54, 115) and to more powerful methods for the estimation of popula-
tion genetic parameters (34, 37). We can now develop new strategies to estimate
gene flow from alternative DNA-based genetic marker systems, population ge-
netic models, and statistical methods. It is not yet clear which, if any, single
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new approach will replace theFST-allozyme approach as the standard method
for gene flow estimation.

Although the efficiency of methods for DNA analysis has greatly improved,
allozyme methods are still more accessible, and methods for the analysis of
DNA sequence data are still under development. However, alternative strategies
have progressed sufficiently to yield some interesting results. They have allowed
us to examine aspects of gene flow distinct from those that can be examined
with allozyme data alone. And in a few cases, results with DNA-based markers
appear to contradict those obtained with allozyme data and thus have led us to
reevaluateFST-allozyme based estimates of gene flow.

In this review, I first identify the basic methodological, theoretical, and sta-
tistical components necessary for the indirect estimation of gene flow from
genetic markers. I examine alternatives for each of these components and how
they may be used in gene flow estimates. Finally, I consider the assumptions
made about the scale of relevant parameters in the estimation of gene flow, and
how scale should influence our interpretations of these estimates.

COMPONENTS OF AN INDIRECT APPROACH

Indirect methods of gene flow estimation characterize the spatial distribution
of genotypes by some parameter and then apply a population genetic model to
ask what level of gene flow would produce a distribution with the same param-
eter value (95, 97). The logic of indirect methods is thus more complex than
estimation from direct measurements, a point first carefully articulated by Weir
& Cockerham (124). Organisms are sampled from populations, and a statistic
is calculated from the distribution of a genetic marker in the samples. This
statistic is then used to estimate a parameter of the genetic marker’s distribution
in the populations. Estimates of this distribution parameter from one or more
genetic markers are combined and used with a population genetic model to
estimate a gene flow parameter. Four components are combined by this logic:
a demographic model, a genetic marker system, a population genetic model,
and a parameter estimator. Alternative methods for the estimation of gene flow
have introduced changes in each of these components, and the significance of
these modifications should be considered individually.

TERMINOLOGY

Before gene flow can be measured, it must be defined, and any quantitative def-
inition of gene flow must be based upon a model of population structure. The
terminology applied to gene flow in population models is potentially confusing
because the more general meanings of the termsmigrationanddispersaldo not
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match their meanings when applied to gene flow. In a general sense, migration
can be defined to include any movements, including cyclical movements that
may regularly return an organism to its original location (7). In contrast, the
term dispersal is more precisely restricted to movements that increase the dis-
tances between organisms, gametes, or propagules (7). Gene flow is defined as
the movement of genes in populations, and thus it includes all movements of
gametes, propagules, and individuals that are effective in changing the spatial
distributions of genes (95). The distinction between movements of organisms
and movements of genes is clearly important and should not be forgotten when
interpreting estimates of gene flow. However, the terms migration and dispersal
have been given secondary meanings in the population genetic literature. When
we consider population genetic models, we usually refer to gene flow between
discrete subpopulations as migration, and to gene flow within a continuous pop-
ulation as dispersal. I employ this useful division of the concept of gene flow
for this review.

The terms deme, subpopulation, population, total population, and metapop-
ulation refer to different scales of population structure, but these scales are
not defined precisely or consistently. For this review, I use only two terms:
subpopulation and total population. I consider a subpopulation to be a unit
of population structure that exchanges migrants with other subpopulations. I
consider a total population to be the set of all subpopulations that exchange
migrants.

FST -ALLOZYME APPROACH

Demographic Models
Most indirect estimates of gene flow have been based on models in which migra-
tion occurs between discrete subpopulations. Each subpopulation is conceived
of as an “island,” with no internal spatial structure, and with gene flow via
migration of individuals. These models represent a restricted subset of diverse
demographic models that have been developed without a population genetic
component (see for example 79, 85). The population genetic consequences of
demographic models and their use in estimates of gene flow have been the
subject of several reviews (32, 95, 97, 102).

The simplest migration model is the infinite island model (95), which is
equivalent to the continent-island model introduced by Wright (127, 129). It
features an infinitely large source population, and one or more finite subpopu-
lations (“islands”) that receive migrants from the source at a constant rate. The
source population can either be a single infinitely large population (a “conti-
nent”), or an infinite number of finite subpopulations (the total population) that
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both produce and receive migrants (“infinite islands”). In either case the source
population is infinite and therefore not subject to genetic drift. Subpopulations
are filled byN zygotes each generation, of which the fractionm are migrants
from the source population. The number and relative locations of the island
subpopulations are unspecified because each is dependent only on the source
population.

The infinite island model leaves out much of what we expect to be true of mi-
gration in nature. However, the simplicity of this model has led to its widespread
use for estimates of gene flow. Its only parameters are those of concern here,N
andm. A more general model would specify a matrix of migration rates between
all subpopulations, but such a model would be too complex to be useful for the
indirect estimation of gene flow (32). However, some special cases with simple
migration matrices have been considered.

In the finite island model orn-Island model (95), migration occurs between
n finite subpopulations of sizeN (60). The migration rate,m, represents the
fraction of each subpopulation derived from migration, with all subpopulations
equally likely to serve as the source of a migrant. Instepping stonemodels
(52), migration occurs only between neighboring subpopulations. The subpop-
ulations may be arrayed in one or more dimensions. Predictions of the model
are made with reference to the number of steps between pairs of subpopulations.
Although direct gene flow occurs only between neighboring subpopulations,
the “stepping stone” effect allows gene flow to occur between nonneighboring
subpopulations via the subpopulations that connect them.

Allozyme Markers
The literature on allozymes as genetic markers is extensive. Lewontin’s book
(61), written less than a decade after the first applications of allozyme methods
to population genetics, clearly lays out the rationale for studying allozyme vari-
ation and summarizes the early findings. Lewontin has also provided thought-
ful retrospectives on how allozyme studies have influenced the development of
population genetics (62, 63). A general overview of allozymes and other molec-
ular markers in studies of natural history and evolution is provided by Avise
(2).

Allozymes have several desirable properties as genetic markers for indirect
estimates of gene flow. They can be assayed without formal genetic analysis
and therefore can be surveyed in nearly any species. The nature of allozyme
variation and the electrophoretic methods used for its detection provide markers
that fit a simple Mendelian model. In higher plants and animals, most allozymes
are encoded by autosomal loci that exhibit standard biparental Mendelian inher-
itance. Multiple polymorphic loci can be surveyed, and typically two or three
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alleles are detected at each. The rates of mutations that produce detectable
differences in allozyme alleles are on the order of 10−6 (119).

Genetic Models
Wright’s work on nonrandom mating provided the theoretical foundation for
estimates of gene flow from allozyme data (127, 130–133). He defined a set
of correlation coefficients, which he called F-statistics, to partition departures
from random mating into components due to nonrandom mating within pop-
ulations and to population subdivision (132). For the continent island model
of population structure with discrete, nonoverlapping generations of diploid
organisms, Wright (127) found the following often-cited relationship between
FST, andNem, the product of effective population size and migration rate:FST '
1/(4Nem− 1). Following Slatkin (99), the quantityNemcan be considered “the
amount of gene flow,” and be represented by the single parameterM.

Parameter Estimation
There has been much confusion over what F-statistics actually represent, and
how they should be estimated (21, 95, 124, 133). It is useful to consider three
meanings. First, F-statistics can be defined as demographic parameters, without
reference to any specific form of genetic variation. This corresponds to Wright’s
definition of an inbreeding coefficient (126). In this sense, F-statistics are pa-
rameters that define how gametes are sampled to form zygotes. The quantity
relevant to gene flow isFST (132).

F-statistics may also be defined as parameters of an allele’s frequency distri-
bution among individuals and subpopulations. In the absence of selection, the
expectations for these distributions correspond to those of the parameters that
define how gametes are sampled. In this sense,FST is the standardized variance
of p, the frequency of an allele, among subpopulations:FST ' σ 2

p/p(1− p)
(132). However, because allele frequencies are subject to stochastic variation,
the value ofFST is expected to vary among alleles at different loci, among
alleles at a multiallelic locus, and over time for any single allele. The stochastic
variance imposes a lower limit on the variance of any estimate ofFST as a
demographic parameter if that estimate is based on a single locus. In addition
to this stochastic variance, realized values ofFST may reflect the effects of
selection and mutation.

F-statistics have also been defined as true statistics, quantities calculated
from data. These statistics are used to estimate parametric values ofFST. Weir
& Cockerham (124) have recommended that parameters be given precise def-
initions and that they be clearly distinguished from statistics. This is a critical
distinction, because the expectation ofFST as a statistic is not equal toFST as
a parameter.FST as a statistic adds components of variance due to sampling
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individuals and subpopulation to the actual variance in allele frequencies among
subpopulations (74, 124).

FST can also be related to the process that generates genealogical relation-
ships of genes, known as the coalescent (53). The coalescence time of two genes
is the number of generations in the past that separates them from a common an-
cestral gene. Slatkin (98) derived the following relationship between Wright’s
FST and coalescence times, as a limit for mutation rates that are too small to
affectFST: FST = (t̄ − t̄0)/t̄ wheret̄0 is the average coalescence time of two
genes drawn from the same subpopulation, andt̄ is the average coalescence
time of two genes drawn from the same total population. This relationship is
important in comparisons of alternative methods of estimating gene flow, be-
cause it separates the demographic processes of migration and genetic drift
from the process of mutation.

In addition toFST, some related quantities have been introduced that cor-
respond to the different meanings that have been attached toFST. GST was
originally introduced by Nei (72) to provide an explicit procedure for combin-
ing information from multiple loci and alleles in a single measure of population
subdivision. BecauseGST was defined for samples of populations and individ-
uals, it has been considered a statistic that can be used as an estimator ofFST

(124). However, the meaning ofGST has broadened with subsequent usage.
Crow & Aoki (23) defined it as a parameter rather than a statistic, and it has
been used as a measure of population subdivision for animal mtDNA (112).
NST was first introduced as a statistic based on average differences between
DNA sequences in populations (64), and can be considered an estimator ofFST

(98) In general, the relationships among these quantities have been determined,
and it has been useful to consider them as alternative estimators of the same
underlying parameter (21, 98, 102, 124).

Several approaches have been taken to the problem of estimatingFST and
related quantities from allozyme data. As discussed above, the problem is not
trivial because the statistics calculated from allozyme data are removed by sev-
eral logical steps from the parameters defined in population genetic models.
Weir & Cockerham (124) emphasized thatFST as a parameter cannot be esti-
mated unless it is adequately defined. They developed such a definition for a
specific model in which a finite number of subpopulations act as independent
realizations of the same process. With this parametric definition ofFST, it is
possible to define estimators that, under the conditions of the model, are unbi-
ased. However, if the underlying model is not valid, it is unclear what is being
estimated or whether the estimator’s properties are preserved. For this reason,
Cockerham & Weir (21) did not consider estimation ofFST to be equivalent to
an estimation of gene flow. Others (72, 74, 102) have focused on the theoretical
link betweenFST andM, and the development of workable methods for the
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estimation ofM from population genetic data. Estimators are sought that are
robust under a range of conditions, rather than well defined under restricted
conditions. The standard approach for estimation ofM is based on Wright’s
island model (127), which suggests the following estimator:

M̂ = (1− FST)/4FST.

A few methods have been explored that bypass the estimation ofFST by
using other parameters of allele frequency distributions that can be linked to
M in population genetic models. Maximum likelihood estimates ofM based on
Wright’s island model (128) assume a beta distribution for allele frequencies
among subpopulations (8, 123). The parameters of the beta distribution can be
expressed in terms ofM and average allele frequencies among subpopulations.
Slatkin introduced the “private alleles” method for the estimation ofM from the
frequencies of rare alleles that are found in only one or a few subpopulations
(96). Although this method does not involve explicit estimation ofFST, it is
based on the same population genetic models and the properties of allele fre-
quency distributions that correspond toFST (9). Spatial autocorrelation methods
can be used to describe patterns of allele frequency distributions (106), detect
population structure (107), and estimate gene flow parameters (105). However,
migration parameters are expected to be only weakly correlated with the quan-
tities estimated by spatial autocorrelation analysis (29, 95, 101), which are also
subject to mutation, stochastic variance, and nonequilibrium conditions (101).

The process of gene flow in natural populations may be far more complex
than its representation in population models. However, if a model is to be used
for indirect estimation of gene flow, it may be of little value to add additional
parameters if their values cannot be determined. There are differing opinions on
the robustness of the methods used to estimate population genetic parameters.
Lewontin (62) expressed the opinion that parameter estimates would be too
sensitive to such unaccounted influences as natural selection and population
history to be reliable. Slatkin (95) acknowledged Lewontin’s concerns but ar-
gued that, in the case of migration parameter estimates, a more optimistic view
was warranted.

Models too complex to be used for estimation of gene flow may still be useful
for testing the robustness of conclusions drawn from relatively simple models.
For example, Slatkin & Barton (102) used a combination of analytical models
and numerical simulations to show that gene flow estimates may be robust with
respect to unknown details of population structure and low levels of selection or
mutation. They concluded that theFST-allozyme approach can be generalized
to more complex models of population structure.
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ALTERNATIVE APPROACHES

Demographic Models
METAPOPULATION MODELS There has been much interest in the ecological
and evolutionary consequences of metapopulation dynamics (see, for exam-
ple, 40 and others in that volume). Recolonization can maintain an assemblage
of subpopulations in which individual subpopulations are subject to frequent
extinction. The term metapopulation has been applied to such assemblages,
although the term is sometimes used more broadly to include almost any
process that involves multiple populations (including conventional migration).
The parameters of a metapopulation model define rates of population replace-
ment and the number and source of propagules or individuals that recolonize
populations.

To my knowledge, no general method has been proposed for indirect estima-
tion of gene flow parameters in metapopulations. There may be little basis for
such a method, because the effect of gene flow on the distribution of genetic
variation in metapopulations is expected to depend on the details of the recolo-
nization process, including the founding number, probability of common origin,
and kin structure (94, 120), and the outcome may also be critically affected by
nonequilibrium dynamics (125). If any general conclusion can be drawn from
these theoretical studies, it may be that naive application of a standard method
for the estimation of gene flow to populations that are subject to frequent extinc-
tions could yield misleading results. However, it is conceivable that population
genetic data could be used in conjugation with other information to estimate
parameters within the framework of a metapopulation model.

SPATIAL MODELS For organisms of relatively limited vagility, gene flow may
be restricted by distance alone within a single population. Wright called this
effect isolation by distance (130, 131). Although consideration of gene flow in
spatial models is not new, these models have not been developed as fully as
subpopulation models and are less often used for indirect estimates of gene
flow. Two basic types of spatial models have been considered for estimates of
gene flow. In continuum models, the locations of individuals are not specified by
an array but are generated by the distributions of dispersal movements, births,
and deaths within a continuous space. In the special case of every individual
leaving exactly one offspring, a random distribution of individuals will develop,
such as expected for particles subject to Brownian movement (92). However, if
individuals leave multiple offspring, siblings will form clusters that reflect the
distribution of dispersal distances, and their descendants in turn will form larger
clusters that represent patterns of multigeneration dispersal. This process leads
to spatial distributions with infinitely large clumps (87), which are biologically
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unrealistic, and severely complicates the analysis of the population genetic
consequences of these models (31, 32).

In natural populations, it can be assumed that there are mechanisms that dis-
tribute individuals more evenly than predicted by simple continuum models (1).
Lattice models (102) represent the most rigid form of local density regulation.
Individuals are distributed in regular arrays of one or two dimensions, and in
the simplest case, exactly one individual occupies each position in the array.
This restriction provides a constant population density and size, and greatly
simplifies mathematical analysis. Lattice models are formally similar to island
and stepping stone models, because each point on the lattice may be treated
as a subpopulation. Other forms of density regulation cannot be easily treated
analytically and are likely to be explored primarily with numerical simulations.

DNA Markers
ANIMAL MITOCHONDRIAL DNA The first DNA-based genetic marker system
that could be routinely applied to surveys of genetic variation in natural popu-
lations was animal mitochondrial DNA (mtDNA). This molecule was amenable
to analysis by methods that were widely available in the early 1980s for ma-
nipulating plasmid DNA. Animal mtDNA could be easily purified by ultracen-
trifugation, and sequence differences could be detected as restriction fragment
length polymorphisms (RFLPs) (15, 59). More recently, the introduction of the
polymerase chain reaction (PCR) has nearly eliminated the need to directly pu-
rify specific DNA sequences (86). Improvements in DNA sequencing methods
have made it feasible to determine the exact nucleotide sequence of amplified
regions of mtDNA for large numbers of individuals (69).

In many important respects, mtDNA polymorphisms are quite different from
allozyme alleles. Animal mtDNA is generally inherited maternally as a single
linkage unit of about 15 kb (5, 12, 13, 59). Because the mitochondrial genome
is transmitted without recombination as a single linkage unit, mtDNA sequence
variants are usually referred to as haplotypes, rather than alleles. The inheri-
tance of mtDNA is thus formally similar to a single haploid locus. Mutation
rates are often higher for animal mtDNA than for nuclear genes (14, 118), and
there are generally many more detectable polymorphisms than there are for
single allozyme loci (3, 5). Perhaps most significantly, detailed characteriza-
tion of sequence differences can be used to infer genealogical relationships and
estimate divergence time (reviewed in 4, 13).

CHLOROPLAST DNA The chloroplast genome is a circular molecule, typically
about 160 kb in size (80). In most higher plants, chloroplast DNA (cpDNA) is
uniparentally inherited—maternally in angiosperms and paternally in conifers
(22, 41, 90). Variation in cpDNA sequences can be detected by either restriction
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site analysis or sequencing. In these respects, cpDNA is similar to animal
mtDNA. However, variation in cpDNA is more often used to infer relationships
among species than as a population genetic marker. This is primarily because in
land plants, cpDNA has a relatively slow rate of evolution, and consequently low
levels of intraspecific polymorphism (20, 80). However, intraspecific polymor-
phism has been found in some species (19, 27, 36, 42, 51, 65, 71, 81, 108, 109),
and so it has been possible to use cpDNA variation to investigate gene flow
(27, 66).

NUCLEAR DNA Nuclear DNA (nDNA) variation has been used to estimate
gene flow in a few studies. Early studies of nDNA polymorphisms were ei-
ther limited to surveys of RFLPs detected by Southern hybridization (58, 88),
or they required laborious molecular cloning methods to isolate genes for nu-
cleotide sequencing (57). The advent of the PCR (polymerase chain reactions),
a growing database of sequences that can be used to design PCR primers, and
automated sequencing (39, 46) have greatly increased the feasibility of nDNA
sequence surveys (93). Two forms of nuclear sequence variation are widely used
as genetic markers: base substitutions and variable numbers of tandem repeats
(VNTRs). Base substitutions are more difficult to survey in populations but offer
a greater possibility of inferring genealogical relationships among sequences.
VNTRs are relatively easy to survey in populations. They are often highly poly-
morphic, and length variation can be detected by simple electrophoretic meth-
ods. VNTR sequences are classified by size as microsatellites or minisatellites.
Microsatellites consist of up to 50 copies of tandemly repeated sequences that
are each 1–10 basepairs (bp) in length. Because their total length is usually less
than a few hundred bp, it is possible to analyze microsatellite length variation
by direct size measurements of PCR-amplified sequences on electrophoretic
gels (113a). Minisatellite sequences contain up to several hundred copies of
repeat units that range from 10–200 bp in length, with total lengths up to 50 kb.
Because of their large size, minisatellite sequences often cannot be amplified
by PCR, and their length polymorphisms are usually detected as RFLPs with
Southern hybridization (48a).

Two mechanisms are expected to generate variation in the number of tandem
repeats. Recombination is expected to generate a broad distribution of length
changes, at rates that may be as high as 5×10−2 (16, 47). Thus, in sequence com-
parisons, little correlation is expected between the magnitude of accumulated
length differences and the number of unequal crossing over events that pro-
duced them. Replication slippage that occurs during DNA replication appears
to favor small stepwise changes in the number of tandem repeats (25, 91, 117).
The rates at which variants are generated by this process appears to be between
10−4 and 10−3 (24, 28, 122). In contrast to variation generated by recombina-



       

P1: NBL/ARY P2: NBL/PLB QC: NBL

September 10, 1997 10:12 Annual Reviews AR042-05

116 NEIGEL

tion, a correlation is expected between the accumulated length differences and
the number of generating events, provided the number of these events is not too
large (117). Although the mechanisms that generate length variation in VNTRs
are not well understood, the distribution of length variation in microsatellite
sequences is most consistent with replication slippage (89, 114, 117). Recom-
bination and related gene conversion processes appear to be responsible for
variation in minisatellite sequences (47, 48).

Genetic Models
There is an obvious temptation to apply estimators based on familiar population
genetic models developed for theFST-allozyme approach to other forms of gene
flow and other genetic marker systems. In some cases, the fit would not be bad,
and the models would be expected to yield reasonable gene flow estimates. In
other cases, the assumptions of these models would be severely violated and
could result in very inaccurate estimates of gene flow. However, even where the
standard models are not inappropriate, new models may provide more effective
methods for the estimation of gene flow.

COALESCENT MODELS The introduction of nucleotide sequence data to pop-
ulation genetics has been accompanied by the development of genealogical,
or coalescent, models (43, 53, 54, 115), which have led to new approaches for
both testing evolutionary hypotheses (49) and estimating population genetic pa-
rameters (35, 37). Two kinds of information in a genealogy of DNA sequences
can be used for estimates of gene flow. First, the lengths of the branches that
connect sequences in the genealogical tree, which correspond to coalescence
times, are sometimes referred to as the distances between the sequences. Sec-
ond, the relative order of branches in the tree, which corresponds to the order of
coalescence events, constitute the cladistic relationships of the sequences. Both
types of information can be used to estimate gene flow, and an ideal method
would make the fullest use of both.

The results of standard population genetic models of gene flow can be recast
in genealogical terms because of the close relationship between coalescence
time and allelic identity (98). However, because these models consider only av-
erage pairwise relationships between sequences, they do not fulfill the potential
of genealogical models. Progress in the development of genealogical models
that incorporate gene flow (49, 111, 113) is expected to lead to the further de-
velopment of methods for estimating gene flow and other population genetic
parameters from DNA sequence data (35, 45).

RAPIDLY MUTATING LOCI If the mutation rate at a locus is extremely high, in-
dividual alleles generated by mutation will appear and be dispersed only briefly
in a population before they are altered by subsequent mutations. Under these
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conditions, the spatial distributions of alleles in a population can be interpreted
as short-term traces of gene flow. O’Connell & Slatkin (78) used both analytic
and simulation models to determine expected spatial distributions of alleles at
rapidly mutating loci. The results of their analyses cannot be simply summa-
rized, but they suggest that if the mutation rate is known, it should be possible
to estimate neighborhood size from the spatial distributions of alleles at rapidly
mutating loci. These models could be applied to microsatellite or minisatellite
loci, although the predictions of these models are sensitive to details of the
mutation process (78).

ORGANELLAR GENOMES Specific models have been developed for the popu-
lation genetics of organellar genomes (mtDNA and cpDNA) (29a, 81a, 112).
These models indicate that rates of both gene flow and genetic drift should de-
pend strongly on the mode of transmission of organellar genomes (maternal, pa-
ternal or biparental), the effective population sizes of haploid and uniparentally
transmitted genomes, and the consequences of multiple modes of dispersal
(e.g. pollen vs seed). A common prediction of these models is that organellar
genomes should often be subject to greater genetic drift than nuclear genomes,
because both haploidy and uniparental transmission may reduce effective pop-
ulation size. A relative reduction in gene flow is also expected for maternally
inherited organellar genomes in plants, because both seed and pollen move-
ments result in gene flow for nuclear genes, while only seed dispersal results in
gene flow for maternally inherited genes.

Parameter Estimation
CLADISTIC MEASURE OF GENE FLOW In comparison with allozyme studies,
most surveys of DNA sequence variation sample fewer individuals and loci but
may provide information that can be used to infer genealogical relationships
among sequences. In these respects, DNA sequence data are not well suited
for analysis byFST, which is best applied to large samples and does not make
use of cladistic relationships. The cladistic measure of gene flow was devel-
oped as an alternative (103). DNA sequences are sampled from subpopulations,
and sequence variation is used to infer a phylogenetic tree by any of several
standard methods (for example, 110). Each sequence on the tree is assigned
a multistate unordered character that indexes the subpopulation from which it
was sampled. A parsimony criterion is then used to determine the minimum
number of character state transitions required for the phylogenetic distribution
of this character to be consistent with the tree. A robust relationship between
s and M was found in simulations of island subpopulations over a range of
conditions. A table can be used to convert values ofs to estimates ofM. From
additional simulations, a simple relationship was also found betweenM and
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the geographic distance between samples in stepping stone and lattice models
(104).

The performance of the cladistic measure of gene flow was compared to
FST-based estimates in simulations of a finite island demographic model, with
sequences subject to recombination and an infinite-sites model of mutation
(45). Performance criteria were bias, variance, and the accuracy of values for
the median and other percentiles of the estimator distributions. For low migra-
tion rates,FST provided the best estimates. At moderate to high rates of migra-
tion, the two methods were differentially affected by recombination rate. Low
rates of recombination favored the cladistic method, whileFST based estimates
improved with higher rates of recombination. Contrary to initial expectations
(103), the cladistic method performed nearly as well asFST under conditions
of moderate to high migration and high recombination. At present, the cladistic
measure of gene flow is probably best applied to animal mtDNA sequences. Un-
like nDNA, mtDNA is not subject to recombination, and unlike cpDNA, there
are usually sufficient polymorphic sites in mtDNA to fully resolve genealogies.

NEIGHBORHOOD SIZE Two parameters can be related to gene flow in spatial
models. One corresponds to single generation dispersal distances, the other is
the effective neighborhood size,Nb which is analogous toM in subpopulation
models. The relationship between these parameters can be understood by con-
sidering a symmetrical distribution of single-generation dispersal movements.
With respect to a single spatial coordinate, this distribution includes both pos-
itive and negative movements, and it has a mean of zero. A typical dispersal
distance can be characterized by the standard deviation of this distribution,σD.
This quantity may be referred to as the standard dispersal distance (77). To-
gether with the population density,D, σD determinesNb. If selfing can occur,
Nb is the expected number of individuals within a range of 2σD (130).

Underlying similarities between spatial models and stepping-stone island
models suggest thatFST analysis can be used to estimateNb (102). It is encour-
aging that similar population genetic results have been reached by analyses of
different spatial models (32, 78, 102). However, the validity of the approxima-
tions used for continuum models has been questioned (32), and these models
may not represent the full range of effects that local density regulation could
have on gene flow. Simulation models of gene flow, while not on a par with
analytic models (21), do allow the investigation of different mechanisms of
density regulation on gene flow in continuous populations (76, 77).

DISPERSAL DISTANCE Striking patterns are often observed when the genealog-
ical relationships of animal mtDNA sequences are overlaid on their geographic
locations. These patterns can be interpreted by a combination of population ge-
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netic, systematic, and biogeographic principles, and the synthesis of these prin-
ciples is referred to as phylogeography (4). We investigated phylogeographic
patterns that could develop from isolation by distance alone (76, 77) with exten-
sions of models that had been developed for the phylogenetic relationships of
mtDNA lineages within species (6) and between species (75). We first consid-
ered a continuum model in which mtDNA lineages were dispersed by a simple
random-walk process. If two members of the same lineage coalescen genera-
tions in the past and the distribution of single generation dispersal distances of
females has varianceσ 2

F , the probability distribution for the distance between
them will have varianceσ 2

F = 2nσ 2
F . This suggests that it should be possible

to estimate the standard dispersal distance,σ 2
F , from an appropriate sample of

pairs of mtDNA sequences with estimates ofn based on sequence divergence.
An attractive feature of this approach is that it is based on a process that is
not dependent on genetic drift and provides an estimate ofσ 2

F , the standard
dispersal distance, which could be directly compared with mark-and-recapture
based estimates of dispersal.

There are two problems in applying the random walk model to pairwise data.
The first is obtaining pairs of individuals that represent independent realizations
of the random walk process. In branching genealogies, many individuals will
share portions of their paths of descent and thus also the paths of dispersal
that led to their present locations. Data from such pairs of individuals are not
independent. There are several possible solutions to this problem, including
simply paring down a sample to eliminate nonindependent pairs.

The second and more difficult problem is obtaining distributions of pairwise
distances that are conditional on coalescence times (10, 77). The variances of
these spatial distributions would provide a direct estimate ofσ 2

G. However, in
general, we cannot randomly sample individuals with respect to their spatial
locations. Rather, we select the locations from which the samples are taken,
which imposes the distribution of these locations on the sample.

We developed a workable solution to these problems by using the variance
of the spatial distribution of all members of a lineage,σ 2

H , as an approximation
of the variance for independent pairs of individuals,σ 2

G (77). Because mem-
bers of the same lineage are not independent,σ 2

H tends to be smaller thanσ 2
G,

and thus we should anticipate some bias in estimates based onσ 2
H . The sec-

ond problem now becomes sampling the spatial distributions of entire lineages,
rather than pairs of individuals. Ideally, a uniform spatial distribution of sam-
pling locations would be used, but few mtDNA surveys provide such data.
However, samples from nonuniform distributions can be used by weighting
them appropriately, as we have described. In simulations, this sampling method
provided a distribution of estimates forσF with the expected bias ofσH /σG and
a standard deviation of 0.14σF (77). An advantage of sampling entire lineages
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is that separate estimates ofσ 2
F can be based on individual lineages or lineages

grouped by location or age. This raises the interesting possibility of analyzing
spatial or temporal heterogeneity in the dispersal process.

A simple random walk model of lineage dispersion assumes that the process
is uniform and unconstrained. This is unlikely to be true for natural populations.
For most species, local population density regulation and barriers to dispersal,
including range limits, would violate these assumptions. Furthermore, over long
time scales, range limits and population sizes would be expected to change.
Therefore, it is important to consider the robustness of the random walk model
and to identify conditions under which it may fail.

Range limits will impose an upper limit onσ 2
H . This range saturation effect

can be predicted by comparing the expected spatial distribution of a lineage with
the size of the available range. As range saturation occurs, it is expected that the
rate at whichσ 2

H increases with time will decline, and the correlation between
σ 2

H andσ 2
F will weaken (76). In additional simulations, with local population

density regulation and cyclical range contractions, the relationshipσ 2
G = 2nσ 2

F
was robust for lineages in which range saturation had not occurred (76).

The predictions of the random walk model were tested with published mtDNA
surveys (76, 77). As expected, the best fits were found for species with broad
geographic ranges and low vagility. In these cases, strong correlations were
observed between lineage age andσ 2

H . For the deer mouse (Peromyscus manic-
ulatus), our bias-corrected estimate ofσ 2

F was 225 m (77), which corresponds
closely to mark-and-recapture estimates of 230 m for females (11) and 264 m
for both sexes (26). Also as expected, there was evidence of range saturation
for highly vagile species of birds and marine fishes. For these cases, there was
no significant correlation between lineage age andσ 2

H , and the observed values
of σ 2

H were not significantly different from those obtained with geographically
randomized data (76).

CONSIDERATIONS OF SCALE AND INTERPRETATION

Population Size
Assumptions about population size are often implicit in gene flow models.
Estimates ofM are really measures of the relative strengths of genetic drift and
migration. In small populations, the effects of genetic drift on allele frequencies
will be strong relative to other forces. Equilibrium between genetic drift and
migration will be quickly established (23) and will be mostly insensitive to
relatively weaker forces such as selection or mutation (102). However, in large
populations, genetic drift is a relatively weak force. If the migration rate is also
small, equilibria that are determined primarily by genetic drift will be reached
slowly (23), and the distributions of genetic markers will be more susceptible
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to mutation and selection. At very low migration rates, the expected time in
generations to equilibrium is on the order of the effective population size. If this
approaches the ages of populations, historical relationships among populations,
rather than gene flow, may be the primary determinant of the distribution of
genetic markers (33).

In large populations, selection acting on genetic markers may bias estimates
of gene flow. A persistent question about allozymes is to what extent their poly-
morphisms are subject to natural selection. Some allozyme data is at least con-
sistent with the effects of selection (18, 56, 57a, 83, 121). Balancing selection
may be of particular relevance to gene flow estimation. It has long been sug-
gested that either heterosis or frequency dependent selection maintains some
allozyme polymorphisms (44, 55, 56). Estimates ofFST based on allozymes
subject to balancing selection would lead to overestimates of gene flow (102).

A thought-provoking comparison of allozyme, mtDNA, and nDNA markers
has been provided by studies of the American oyster (Crassostrea virginica). Its
life history is typical of many benthic marine invertebrates, with planktonic lar-
vae that are capable of long-distance dispersal. Buroker (17) surveyed allozymes
in American oyster populations from the Atlantic coast of North America and
the Gulf of Mexico. Allele frequencies at five polymorphic loci were generally
similar among all locales, indicating a high rate of gene flow. In contrast, Reeb
& Avise (84) found Atlantic and Gulf populations were distinguished by two
very divergent groups of mtDNA. The distributions of these haplotypes implies
that Atlantic and Gulf of Mexico populations have long been completely iso-
lated with respect to gene flow. Several alternative explanations can generally
be proposed to account for differences in gene flow estimates from allozymes
and mtDNA. By conventional wisdom, an unlikely explanation would be that
selection has acted on all five allozyme loci to maintain similar gene frequencies
in isolated populations. However, based on subsequent evidence, this appears
to be the most probable explanation. A survey of four randomly cloned nDNA
markers revealed a consistent geographic pattern similar to the distribution of
mtDNA haplotypes (50). These nuclear sequences should be subject to the same
forces of gene flow and genetic drift as allozyme loci, but, because they are not
protein-coding loci, they are not likely subject to the same selective forces. It
appears that in the two large regional populations of oysters, balancing selection
at allozyme loci may have overcome the relatively weak force of genetic drift
and thereby created the appearance of high gene flow.

Mutation Rate
The relationship betweenFST andM predicted by standard population genetic
models is based on the assumption that mutation rates are much lower than
migration rates. If mutation rates are higher than assumed, estimates ofFST
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will be downwardly biased. The exact form and magnitude of this bias depends
on the mutation process. For an infinite alleles model of mutation and an island
model of gene flow:FST ' 1/(1+ 4Nem+ 4Nµ) (23). Thus, mutation has the
same effect onFST as gene flow. For a stepwise mutation model, which may
be appropriate for microsatellite loci (89, 114, 117), the bias is greater (100).
This dependence of estimates ofFST on mutation rates should not be important
for allozyme markers, which have very low mutation rates. However, for DNA
sequences with much higher mutation rates, this problem could be quite severe.

If DNA sequence data are used, the problem of mutation saturation can
be avoided by using any of several measures that effectively weight pairwise
comparisons of sequences by the number of mutations that differentiate them
(64, 73, 112). More generalized methods for the use of weighted pairwise data
in analysis of population structure have also been developed (30, 82). However,
for mtDNA data, a cladistic measure of gene flow (103, 104) may be preferable
to anFST-based estimate (45).

It is less obvious how to correct estimates ofFST for the high mutation rates
of microsatellite and minisatellite loci. A weighted pairwise distance measure
(38) and a measure of population structure that is analogous toFST (100) have
been proposed for microsatellites that undergo a stepwise mutation process.
These measures perform well in simulations, but further testing of the stepwise
mutation model is needed before their reliability can be assumed. For mini-
satellites, an infinite alleles model may provide a reasonable approximation
of random unequal crossover events and a large number of potential length
states. However, estimators that use corrections based solely on multiple event
probabilities would be subject to the high variance of these corrections, and the
loss of information that occurs when only a small proportion of alleles remain
identical in state.

Time
Barton & Wilson (10) raised a general criticism of any attempt to estimate gene
flow from genealogical data, such as mtDNA genealogies. With coalescent
models of isolation by distance and neighborhood sizes typical of most species,
average coalescence times were sufficiently long for the dispersal of lineages
to reach range saturation and thus randomize most information about gene
flow. Because in many species mtDNA genealogies are not geographically
randomized, they concluded that this long-term expectation of isolation by
distance is never realized and that mtDNA distributions are generated primarily
by historical processes.

This is a serious criticism not only of gene flow estimates from genealog-
ical data but of any method of gene flow estimation based on a process that
may be strongly influenced by population history (33). The problem is not so
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much the models as the scale on which they are applied. For example, the time
in generations,t, required forFST to approach equilibrium is approximately
1/[2m+ 1/(2Ne)], wherem is the rate of migration andNe the effective popula-
tion size (23). While it is often stated thatFST approaches equilibrium quickly,
clearly this is not the case for largeNe and smallm. Does this invalidate esti-
mates of gene flow for broad relatively isolated regional populations, which are
likely to have been influenced by historical processes as well as gene flow?

The answer to this may be in part a matter of perspective. Large-scale pat-
terns of population structure, whether described by allele frequencies or DNA
sequence genealogies have almost certainly been influenced by history. How-
ever, throughout the history of a population, the mechanisms behind broad
transformations of its structure must necessarily include finer-scale processes
of dispersal, migration, and genetic drift, albeit in a more dynamic context than
is generally represented in models. The challenge is to develop tools that can
resolve these processes and not to assume that simple measurements necessarily
require simplistic interpretations.

Gene flow estimates are usually made without reference to a specific time-
frame; however, it is possible to adapt them to detect historical changes in
patterns of gene flow. For stepping-stone models of population structure, the
relationship between estimates ofM and the distance between samples can
provide evidence for a history that has prevented the attainment of equilib-
rium (99). Similar analyses can be based on cladistic measures of gene flow
(104). Comparisons of population structure measures for nuclear vs. organellar
genomes (67, 81a), or for rapidly and slowly mutating loci (100), also have the
potential to reveal whether gene flow and genetic drift have reached equilib-
rium. Estimates of dispersal distance based on the geographical distribution of
mtDNA lineages have been viewed as particularly sensitive to historical effects
(10). However, this sensitivity could be used to examine the history of dispersal
by comparing gene flow estimates among lineages of different ages (76, 77).
Finally, it may be possible to identify the processes that generate complex phy-
logeographic patterns (4) by testing the fit of identifiable elements of these
patterns to alternative models that represent both historical and dispersal pro-
cesses (2, 116). Progress in these areas should benefit from the availability of
genetic markers that represent different components of gene flow, from models
that are built from different assumptions, and from fresh perspectives on gene
flow as a complex process operating on many spatial and temporal scales.
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