


Marine biogeography and population genetics have 
undergone fundamental changes since the publication of 
“Bulletin 89.” In marine biogeography the most important 
change was the eventual acceptance of plate tectonics as 
a mechanism that shapes global biogeographic patterns. 
From this perspective, vicariance biogeography brought a 
rigorous phylogenetic approach to biogeographic analysis 
(Nelson and Platnick 1981), and Marine Zoogeography 
(Briggs 1974) synthesized what was then known about 
the distributions of marine faunas. In population genetics 
there were 2 major transformations. The first was brought 
about by the introduction of allozyme methods in the 
mid-1960s, which made it possible to survey Mendelian 
variation in virtually any species (Hubby and Lewontin 
1966). This sudden influx of data revitalized the field and 
led to a greater emphasis on the genetics of natural pop-
ulations (Lewontin 1974). The second and still ongoing 
transformation was a shift away from the classical per-
spective of allele frequencies toward the molecular per-
spective of variation in DNA sequences (Lewontin 1985). 
The DNA sequences were recognized as a richer source of 
information than allele frequencies and required new ana-
lytical approaches. The parallel rise of molecular perspec-
tives in population genetics, systematics, physiology, and 
other fields engendered new areas of synthesis. A prime 
example is intraspecific phylogeography, which began 
with the application of cladistic principles from biogeog-
raphy to the geographic distributions of mitochondrial 
DNA lineages within species (Avise, Reeb, and Saunders 
1987). Phylogeography not only led to new insights in 

biogeography and population genetics but also prepared a 
generation of evolutionary biologists to work on both sys-
tematic and population genetic questions.

Planktonic larval dispersal in marine species is certain 
to have important demographic and evolutionary conse-
quences. However, as several authors have noted, there is 
much that we still do not know about dispersal distances, 
connectivity between populations, and the nature of bar-
riers to gene flow in the marine realm (Neigel 1997, Gros-
berg and Cunningham 2000, Warner and Cowen 2002). 
Population genetic methods can be used to address these 
questions but the results are often frustratingly ambigu-
ous. Most measures of dispersal based on population 
genetics are indirect, requiring a theoretical model to link 
observable distributions of genetic markers to parame-
ters that represent gene flow (Slatkin 1985, 1987, Neigel 
1997). The reliability of these measures is open to ques-
tion because the distributions of genetic markers are also 
affected by forces other than gene flow, notably genetic 
drift, selection, and mutation. For marine species we typi-
cally know even less about these other forces than we do 
about dispersal. Fortunately, this conundrum appears to 
be at least partly solvable with new approaches that are 
just beginning to yield results (see for example Bilodeau, 
Felder, and Neigel 2005). If these approaches are success-
ful, it is possible that much of the literature reviewed here 
could become outdated. Nevertheless, this is an oppor-
tune time to review what has been learned from surveys 
of genetic variation within species of the Gulf of Mexico 
(GMx). This body of work shows that the GMx is richer in 
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has often been illuminating to compare results from dif-
ferent markers.

There have been enough surveys of genetic variation 
in GMx species to suggest the possibility of a detailed 
comparative analysis that might reveal hitherto unno-
ticed patterns and suggest novel hypotheses. However, 
meaningful comparisons among genetic surveys are lim-
ited by differences in methodology, including differences 
in type of genetic marker, sampled localities, and meth-
ods of data analysis. There are no common yardsticks of 
genetic variation or differentiation, even though the same 
statistics can be calculated from different data sets. For 
example, Wright’s FST is often viewed as a common mea-
sure of genetic differentiation among populations. How-
ever, estimates of FST are strongly dependent on the type of 
genetic marker used and the scale at which populations 
are defined. Estimates of FST based on moderately poly-
morphic markers, such as allozymes, are generally much 
higher than estimates based on highly polymorphic mark-
ers such as microsatellites (Neigel 1997, Hedrick 1999, 
Neigel 2002). Populations are usually defined by arbitrary 
geographic boundaries, which might range in scale from 
a few hundred meters of shoreline to entire ocean basins. 
Measures of genetic differentiation at such different scales 
cannot be meaningfully compared. In theory it would be 
possible to compare genetic surveys on the basis of com-
mon demographic parameters, such as migration rates, 
that were estimated for comparable geographic units. 
However, this would require reanalysis of the raw genetic 
data from every survey, and raw data are often not pro-
vided in publications (Leberg and Neigel 1999).

Within the limitations set by differences in meth-
odology, general inferences about gene flow among 
marine populations are usually based on how much of 
the observed variation in genetic markers is distributed 
among geographic samples (Grosberg and Cunningham 
2000, Hellberg et al. 2002). Four levels of genetic differ-
entiation are conventionally recognized: (1) fixed differ-
ences in allelic composition or reciprocal monophyly in 
gene genealogies; (2) moderate differences in allele fre-
quencies or haplotypes; (3) slight but statistically signifi-
cant differences in genetic markers; and (4) no significant 
differences. Fixed differences in allozyme alleles between 
populations or reciprocal monophyly of DNA sequences 
are considered evidence of a complete barrier to gene flow 
that has persisted for at least thousands of years. Whether 
or not such genetically isolated populations are viewed as 
separate species can be influenced by previous taxonomic 
work. For example, mitochondrial DNA and allozyme 

evolutionary diversity and endemism than has been gen-
erally appreciated. Also, some notable genetic phenom-
ena have been found in the GMx, such as genetic breaks 
associated with the Floridian disjuncture of the Carolin-
ian marine province. These important findings from the 
GMx figure prominently in the field of marine population 
genetics as a whole.

Surveys of Genetic Markers in the GMx

In the peer-reviewed literature there are about 100 pub-
lished surveys of genetic markers in marine and estu-
arine species that occur in the GMx (see list of popula-
tion genetic surveys), with some publications reporting 
surveys of multiple species. This total does not include 
surveys of morphological variation (the genetic basis 
of which is usually not determined) or studies of a pri-
marily systematic focus that are based on small num-
bers of individuals from each species. (If any population 
genetic surveys were omitted from this review at the time 
of this writing, 2006, it was unintentional, and it would 
be appreciated if they were brought to the author’s atten-
tion.) In the selection of taxa to survey there has been a 
strong bias in favor of those of commercial or recreational 
value. Indeed, some fishery species (e.g., Sciaenops ocella-
tus) have been surveyed repeatedly for a variety of genetic 
markers. Most surveys were intended primarily to detect 
regional patterns of differentiation such as would corre-
spond to stocks that could be managed as units. However, 
despite this emphasis on large regional scales, many sur-
veys were restricted to U.S. coastlines and often omitted 
substantial portions of a species range. A large proportion 
of the surveys included an explicit comparison between 
populations from the GMx and those from the NW Atlan-
tic. I have included some discussion of genetic “breaks” 
found in these comparisons, even if their locations fall 
slightly outside the GMx (typically the Atlantic coast of 
Florida). This is because all of these findings have contrib-
uted to our growing understanding of the forces that have 
shaped the population genetics and biogeography of the 
GMx (Avise 1992).

The selection of genetic markers for surveys of genetic 
variation in the GMx has paralleled the general trend in 
population genetics: the earliest studies used allozymes; 
later ones introduced restriction fragment length poly-
morphisms (RFLPs) of mitochondrial DNA (mtDNA), 
followed by mtDNA sequences, and most recently, mic-
rosatellites and nuclear DNA sequences. However, all of 
these types of genetic markers continue to be used, and it 
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extensive gene flow, or panmixia, among populations. 
However, the difference between finding slight differenti-
ation rather than no differentiation is often simply a mat-
ter of statistical power. For example, statistically signifi-
cant differences in genetic markers among populations 
of Sciaenops ocellatus were found only when large sample 
sizes and sufficiently polymorphic genetic markers were 
surveyed (see list). Because many surveys have been lim-
ited in these respects it would be difficult to counter the 
proposition that with large enough samples and suitable 
genetic markers statistically significant geographic varia-
tion could be detected in any marine species. Thus, the 
problem of interpreting slight genetic differentiation is 
probably also relevant to cases in which no differentiation 
has been detected. In the list, 3 levels of genetic differentia-
tion are distinguished: no statistically significant differen-
tiation, differences in frequencies of genetic markers, and 
fixed differences at some loci or reciprocal monophyly for 
gene genealogies. No distinction is made between slight 
and moderate differences in the frequencies of genetic 
markers. This represents a compromise between the pro-
vision of what would be generally accepted as valid and 
useful characterization of levels of genetic differentiation  
and the ambiguities, discussed above, inherent in such 
characterizations.

Biogeographic Context

The regional patterns of genetic variation that are detected 
in studies of GMx species are usually interpreted in 
terms of historical biogeography. There is an underlying 
assumption that larger-scale patterns develop over lon-
ger periods of time and thus reflect deeper historical pro-
cesses. This assumption is supported by both population 
genetics theory, which predicts that genetic drift takes 
place more slowly in larger units of population structure 
(Wright 1951), and by empirical evidence such as hier-
archically nested phylogeographic patterns (Neigel, Ball, 
and Avise 1991).

Biogeographically, the GMx is part of a larger sys-
tem that includes the western Atlantic and Caribbean. 
The northern GMx has been considered part of the 
warm-temperate Carolinian Marine Province, which 
also includes the northwestern Atlantic coast from Cape 
Hatteras, North Carolina, to Cape Canaveral, Florida. In 
contrast, the southern GMx is tropical, and along with 
the Caribbean is considered part of the Tropical North-
western Atlantic Province. The approximate boundar-
ies between warm-temperate and tropical conditions in 

frequency differences between the nominally conspecific 
northeastern GMx and northwestern GMx populations of 
the thalassinidean Callichirus islagrande are greater than 
those between the brachyuran species Menippe adina and 
M. mercenaria, although only the latter pair exhibits obvi-
ous phenotypic differences and formal taxonomic recog-
nition (Bert 1986, Williams and Felder 1986, Staton and 
Felder 1995, Schneider-Broussard et al. 1998, Bilodeau, 
Felder, and Neigel 2005).

Moderate differences in the frequencies of genetic 
markers between populations are interpreted as evidence 
of either a partial barrier to gene flow or an inconstant 
barrier that may have recently formed or broken down; 
although recent could mean many thousands of years. 
Classical methods of data analysis cannot distinguish 
these alternatives, although newer methods potentially 
can (Knowles and Maddison 2002). Differences in the 
frequencies of genetic markers that are slight but statisti-
cally significant are the most difficult to interpret. Much 
depends on assumptions about the strength of genetic 
drift, which has been a subject of broad speculation for 
marine populations. If it is assumed that genetic drift is 
weak because populations are very large (often the case 
for marine species), then even a slight amount of genetic 
differentiation implies that gene flow must also be very 
weak not to have completely overcome genetic drift. This 
leads to the interpretation that there is very little migra-
tion among the populations, because even low rates of 
gene flow should be able to abolish any detectable levels of 
differentiation. However, it is also conceivable that genetic 
drift is in fact very strong in marine populations because 
entire cohorts of recruits could be spawned by only a few 
individuals, a scenario known as “sweepstakes reproduc-
tion” (Hedgecock 1994). In this view, low levels of genetic 
differentiation imply that gene flow must be very strong to 
overcome the strong genetic drift associated with sweep- 
stakes reproduction, and this leads to the interpretation 
that gene flow (and hence migration) is very high among 
populations. An additional factor that is probably not con-
sidered often enough is the role of natural selection. Selec-
tion can either increase or decrease differentiation among 
populations to any extent and at any scale. This lack of a 
specific prediction has made it difficult to test hypotheses 
based on selection and has caused some marine geneti-
cists to avoid giving it much consideration (Hellberg et al. 
2002). From this discussion it should be evident that there 
is a broad range of plausible interpretations for slight 
genetic differentiation among marine populations.

Complete absence of genetic differentiation implies 
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straits across Florida; and (3) changes associated with gla- 
cial cycles. These are each considered in detail below.

The Emergence of the Central American Isthmus

Paleontological records indicate that the emergence of 
the Central American Isthmus began to alter patterns 
of surface circulation, carbonate deposition, and evolu-
tion in the Caribbean Sea by the late Miocene (Collins, 
Budd, and Coates 1996). Complete closure of the Tropi-
cal American Seaway between the Pacific Ocean and the 
Caribbean Sea occurred in the mid-Pliocene, about 3.5 
million years before the present (Keigwin 1982, Coates 
et al. 1992). An important consequence was the redirec-
tion of the North Equatorial Current northward into the 
Gulf Stream, through the Yucatán Straits and into the 
GMx. The closure of the Tropical American Seaway was 
a vicariant event that isolated populations of marine spe-
cies on either side of the Isthmus of Panama. Sister species 
created by this event, referred to as geminate species, are 
often used as standards for the estimation of the rate of 
mitochondrial DNA sequence evolution. These estimates, 
or “molecular clock calibrations,” can be used to date other 
cladogenic events from mtDNA sequence data.

Suwannee Straits. In the mid-Miocene (Haq, Harden-
bol, and Vail 1987) and possibly the late Pliocene (Ward 
and Strickland 1986), high sea levels created a deepwater 
channel, the Okeefenokee Trough, which separated Flor-
ida from the mainland of North America. The Suwan-
nee straits flowed through this channel from the GMx 
to the Atlantic (Olsen 1968, Brooks 1973, Riggs 1984). It 
has been hypothesized that the Suwannee straits allowed 
stone crabs (Menippe adina) from the GMx to migrate 
through the Okeefenokee Trough and hybridize with 
crabs of their sister species, M. mercenaria, on the Atlan-
tic coast (Bert and Harrison 1988). The existence of a rel-
ict hybrid zone would explain why crabs from the coast of 
Georgia have some of the phenotypic characteristics and 
allozyme allele frequencies that are otherwise character-
istic of M. adina from the GMx (Bert 1986). As a biogeo-
graphic scenario, introgression through the Okeefenokee 
Trough requires that the 2 species of Menippe diverged 
prior to the opening of the Suwannee straits and that the 
hybrid population on the coast of Georgia has been iso-
lated from GMx M. adina since the closure of the straits. 
These events would have occurred at least several mil-
lion years ago, a time scale that is amenable to testing by 
molecular clock estimates of DNA sequence divergence 
between the 2 nominal species and between M. adina in 

the GMx are Cape Rojo, Mexico, to the west and Cape 
Romano, Florida, to the east (Briggs 1974). The Caro-
linian Province is interrupted by the portion of the Flor-
ida peninsula that extends into tropical waters, and the 
ranges of some Carolinian species are broken at this dis-
junction while other, more eurythermic species continue 
through it. Another recognized biogeographic division 
separates the northeastern GMx from the northwestern 
GMx, with the boundary placed at either the mouth of 
the Mississippi River or at Mobile Bay, Alabama (Briggs 
1974, McClure and McEachran 1992). Geologically, sedi-
ments in the northwestern GMx are predominately terri-
geneous, whereas those in the northeastern GMx are car-
bonate, with corresponding differences in the distribution 
and types of benthic habitats and communities. This lon-
gitudinal division is reinforced by the outflows of the Mis-
sissippi and Atchafalaya rivers. Low salinity water loaded 
with sediments and nutrients are carried by surface cur-
rents to the west during winter and to the east during 
summer (Ohlmann and Niiler 2005). These river outflows 
have dramatic effects on coastal habitats and disrupt the 
ranges of some coastal species.

The GMx has had a relatively long and tectonically 
stable history since its formation in the late Jurassic, 
approximately 150 mybp. Geological, climatological, and 
oceanographical changes that occurred during the Neo-
gene Period (23 my to present) are potential influences 
on the generation of species diversity and the shaping of 
genetic variation within species of the GMx. A singular 
tectonic change that occurred during this period was the 
emergence of the Central American Isthmus in the Plio-
cene, which closed the Tropical American Seaway that 
connected the Pacific Ocean and the Caribbean Sea. The 
closure severed biotic connections between the 2 basins 
and profoundly altered patterns of oceanic circulation in 
the Caribbean and GMx. Throughout the Neogene there 
have been repeated cycles of glaciation, which altered sea 
levels and climates and induced shifts in ranges that are 
likely to have both fragmented species and brought pre-
viously isolated fragments back into contact. It can be 
assumed that practically all GMx species have experienced 
these effects because the most recent glacial period ended 
just 12,000 years ago. Indeed, because there have been as 
many as 15 glacial cycles during the Pleistocene, it is likely 
that their effects on the biogeography of contemporary 
species are compounded in ways that may be difficult to 
unravel. Three vicariant mechanisms have received the 
most attention: (1) the emergence of the Central Ameri-
can Isthmus; (2) the opening and closing of the Suwannee 
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Genetic differentiation associated with the Florida dis-
juncture of the Carolinian Province has been found for 
many species (see list). The amount of differentiation var-
ies from none to fixed allelic differences and / or recipro-
cal monophyly. Surprisingly, differentiation is found not 
only in species with ranges that are broken by the disjunc-
ture but also in species with apparently continuous ranges 
(Avise 1992, Cunningham and Collins 1998). Although 
in some comparisons the extent of genetic differentia-
tion appears to be inversely related to dispersal ability, this 
relationship fails to hold when more than a few species 
are considered (Cunningham and Collins 1998, Gold and 
Richardson 1998a). Molecular clock estimates indicate 
that genetic breaks associated with the Carolinian dis-
juncture do not date to any single event, which is to be 
expected given the cyclical nature of glacial effects. This 
has led to the characterization of these congruent breaks 
as a case of “pseudoconvergence” (P. Cunningham and 
Collins 1994, C. Cunningham and Collins 1998).

A full explanation of any case of genetic divergence 
between GMx and Atlantic populations must not only 
account for its origins, but also its maintenance under 
present conditions. High rates of gene flow for even a few 
generations can eliminate genetic differentiation between 
populations. It thus seems necessary that either oceano-
graphic barriers to dispersal or selection against migrants 
(or hybrids) must be acting to maintain geographic varia-
tion. However, to determine which of these mechanisms 
predominates has been very difficult. For example, within 
the U.S. GMx the American oyster, Crassostrea virginica, 
is divided into 2 distinct genetic units that are reciprocally 
monophyletic for mtDNA (Reeb and Avise 1990) and 
have fixed allelic differences for some nuclear DNA mark-
ers (Karl and Avise 1992, Hare and Avise 1998). These 
genetic units meet at Cape Canaveral, Florida, where they 
form a narrow hybrid zone. Detailed analysis of genetic 
markers within this cline could not determine whether 
it was maintained primarily by selection or by restricted 
gene flow (Hare and Avise 1996).

A recent study demonstrates the importance of con-
sidering the Carolinian disjuncture in a regional context 
that includes the tropical GMx and Caribbean. A survey 
of genetic markers in the Brachidontes exustus (scorched 
mussel) species complex throughout the GMx and Carib-
bean revealed that the genetic break associated with the 
Carolinian disjuncture is just one of many regional dis-
junctions, and that northwestern Atlantic populations are 
more closely related to some Caribbean populations than 
to Carolinian populations in the GMx (Lee and Ó Foighil 

the GMx and “adina-like” crabs from the putative relict 
hybrid zone of the coast of Georgia. Based on an anal-
ysis of mitochondrial 16S ribosomal DNA sequences, the 
estimated divergence times for both comparisons were 
much less than predicted by the Suwannee straits hypoth-
esis. Indeed, M. adina and M. mercenaria appear to have 
separated very recently, so much so that they share some 
identical 16S haplotypes (as well as multiple nuclear DNA 
markers; Schneider-Broussard et al. 1998).

The example of the stone crabs illustrates how a corre-
spondence between a genetic pattern and the location of a 
known vicariant event can be misleading. For highly vagile 
marine species, we should not expect to see the geographic 
imprints of remote events to be preserved in their genetic 
structures unless they are maintained by present day condi-
tions. For example, if a genetic break is found at the mouth 
of the Mississippi River, we should not assume that the river 
created the break. An alternative possibility is that 2 races 
of the species were formed elsewhere in the past and subse-
quently shifted to their present day ranges. The river mouth 
could now be acting as a barrier to dispersal or simply mark 
the point at which a critical change in environmental con-
ditions occurs. The dating of cladogenic events by molecu-
lar clock estimates provides one means to test hypotheses 
about cause and effect relationships between past geologi-
cal events and present day genetic structure.

The Florida Vicariant Zone

The pattern of genetic breaks associated with the interrup-
tion of the Carolinian Province in southern Florida is one 
of the best-studied cases in the field of phylogeography 
(Avise 1992, 2000). Pleistocene cycles of glaciation could 
have caused repeated episodes of contact and separation 
between GMx and Atlantic populations by at least 2 mech-
anisms (Avise 1992). First, glacial cooling would eliminate 
the tropical zone in southern Florida and bring previously 
allopatric populations from the 2 sides of the disjunction 
into contact (Hedgepeth 1954). The second mechanism 
would have the opposite effect of increasing isolation of 
GMx and Atlantic populations of estuarine species dur-
ing glaciations. Drops in sea level would expose large areas 
of the Florida and Yucatán peninsulas, and along with 
decreased rainfall, could have eliminated estuarine habi-
tats that previously bridged the northern GMx and Atlan-
tic. These climate-induced events could have occurred as 
recently as the most recent glaciation only 12,000 years 
ago, or during any of the many other glaciations that 
occurred during the Pleistocene, Pliocene, or Miocene.
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control region; HC = hemocyanin protein polymorphism; 
ITS = ribosomal internal transcribed spacer; LDH = lac-
tate dehydrogenase; ND4 = mitochondrial NADH dehy-
drogenase subunit 4; PCR-RFLP = restriction fragment 
polymorphism within DNA amplified by the polymerase 
chain reaction; rbcl = ribulose-biphosphate carboxylase; 
RFLP = restriction fragment polymorphism; SEQ = DNA 
sequence; Y = yes; N = no; NA = not available; 0 = no sta-
tistically significant difference; 1 = difference in frequen-
cies of markers; 2 = fixed allelic differences or reciprocal 
monophyly of sequences; 16S = large subunit ribosomal 
RNA gene; 28S = 28S ribosomal RNA gene. Numbers in 
“Markers” columns denote number of marker loci. Italic 
numbers refer to numbered references; superscripts refer 
to endnotes at end of table.
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