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Population Genetics and Biogeography

of the Gulf of Mexico

Joseph E. Neigel

Marine biogeography and population genetics have
undergone fundamental changes since the publication of
“Bulletin 89.” In marine biogeography the most important
change was the eventual acceptance of plate tectonics as
a mechanism that shapes global biogeographic patterns.
From this perspective, vicariance biogeography brought a
rigorous phylogenetic approach to biogeographic analysis
(Nelson and Platnick 1981), and Marine Zoogeography
(Briggs 1974) synthesized what was then known about
the distributions of marine faunas. In population genetics
there were 2 major transformations. The first was brought
about by the introduction of allozyme methods in the
mid-1960s, which made it possible to survey Mendelian
variation in virtually any species (Hubby and Lewontin
1966). This sudden influx of data revitalized the field and
led to a greater emphasis on the genetics of natural pop-
ulations (Lewontin 1974). The second and still ongoing
transformation was a shift away from the classical per-
spective of allele frequencies toward the molecular per-
spective of variation in DNA sequences (Lewontin 1985).
The DNA sequences were recognized as a richer source of
information than allele frequencies and required new ana-
lytical approaches. The parallel rise of molecular perspec-
tives in population genetics, systematics, physiology, and
other fields engendered new areas of synthesis. A prime
example is intraspecific phylogeography, which began
with the application of cladistic principles from biogeog-
raphy to the geographic distributions of mitochondrial
DNA lineages within species (Avise, Reeb, and Saunders
1987). Phylogeography not only led to new insights in

biogeography and population genetics but also prepared a
generation of evolutionary biologists to work on both sys-
tematic and population genetic questions.

Planktonic larval dispersal in marine species is certain
to have important demographic and evolutionary conse-
quences. However, as several authors have noted, there is
much that we still do not know about dispersal distances,
connectivity between populations, and the nature of bar-
riers to gene flow in the marine realm (Neigel 1997, Gros-
berg and Cunningham 2000, Warner and Cowen 2002).
Population genetic methods can be used to address these
questions but the results are often frustratingly ambigu-
ous. Most measures of dispersal based on population
genetics are indirect, requiring a theoretical model to link
observable distributions of genetic markers to parame-
ters that represent gene flow (Slatkin 1985, 1987, Neigel
1997). The reliability of these measures is open to ques-
tion because the distributions of genetic markers are also
affected by forces other than gene flow, notably genetic
drift, selection, and mutation. For marine species we typi-
cally know even less about these other forces than we do
about dispersal. Fortunately, this conundrum appears to
be at least partly solvable with new approaches that are
just beginning to yield results (see for example Bilodeau,
Felder, and Neigel 2005). If these approaches are success-
ful, it is possible that much of the literature reviewed here
could become outdated. Nevertheless, this is an oppor-
tune time to review what has been learned from surveys
of genetic variation within species of the Gulf of Mexico
(GMx). This body of work shows that the GMx is richer in
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evolutionary diversity and endemism than has been gen-
erally appreciated. Also, some notable genetic phenom-
ena have been found in the GMx, such as genetic breaks
associated with the Floridian disjuncture of the Carolin-
ian marine province. These important findings from the
GMXx figure prominently in the field of marine population
genetics as a whole.

Surveys of Genetic Markers in the GMx

In the peer-reviewed literature there are about 100 pub-
lished surveys of genetic markers in marine and estu-
arine species that occur in the GMx (see list of popula-
tion genetic surveys), with some publications reporting
surveys of multiple species. This total does not include
surveys of morphological variation (the genetic basis
of which is usually not determined) or studies of a pri-
marily systematic focus that are based on small num-
bers of individuals from each species. (If any population
genetic surveys were omitted from this review at the time
of this writing, 2006, it was unintentional, and it would
be appreciated if they were brought to the author’s atten-
tion.) In the selection of taxa to survey there has been a
strong bias in favor of those of commercial or recreational
value. Indeed, some fishery species (e.g., Sciaenops ocella-
tus) have been surveyed repeatedly for a variety of genetic
markers. Most surveys were intended primarily to detect
regional patterns of differentiation such as would corre-
spond to stocks that could be managed as units. However,
despite this emphasis on large regional scales, many sur-
veys were restricted to U.S. coastlines and often omitted
substantial portions of a species range. A large proportion
of the surveys included an explicit comparison between
populations from the GMx and those from the NW Atlan-
tic. I have included some discussion of genetic “breaks”
found in these comparisons, even if their locations fall
slightly outside the GMXx (typically the Atlantic coast of
Florida). This is because all of these findings have contrib-
uted to our growing understanding of the forces that have
shaped the population genetics and biogeography of the
GMx (Avise 1992).

The selection of genetic markers for surveys of genetic
variation in the GMx has paralleled the general trend in
population genetics: the earliest studies used allozymes;
later ones introduced restriction fragment length poly-
morphisms (RFLPs) of mitochondrial DNA (mtDNA),
followed by mtDNA sequences, and most recently, mic-
rosatellites and nuclear DNA sequences. However, all of
these types of genetic markers continue to be used, and it

has often been illuminating to compare results from dif-
ferent markers.

There have been enough surveys of genetic variation
in GMx species to suggest the possibility of a detailed
comparative analysis that might reveal hitherto unno-
ticed patterns and suggest novel hypotheses. However,
meaningful comparisons among genetic surveys are lim-
ited by differences in methodology, including differences
in type of genetic marker, sampled localities, and meth-
ods of data analysis. There are no common yardsticks of
genetic variation or differentiation, even though the same
statistics can be calculated from different data sets. For
example, Wright's F, is often viewed as a common mea-
sure of genetic differentiation among populations. How-
ever, estimates of F; are strongly dependent on the type of
genetic marker used and the scale at which populations
are defined. Estimates of F, based on moderately poly-
morphic markers, such as allozymes, are generally much
higher than estimates based on highly polymorphic mark-
ers such as microsatellites (Neigel 1997, Hedrick 1999,
Neigel 2002). Populations are usually defined by arbitrary
geographic boundaries, which might range in scale from
a few hundred meters of shoreline to entire ocean basins.
Measures of genetic differentiation at such different scales
cannot be meaningfully compared. In theory it would be
possible to compare genetic surveys on the basis of com-
mon demographic parameters, such as migration rates,
that were estimated for comparable geographic units.
However, this would require reanalysis of the raw genetic
data from every survey, and raw data are often not pro-
vided in publications (Leberg and Neigel 1999).

Within the limitations set by differences in meth-
odology, general inferences about gene flow among
marine populations are usually based on how much of
the observed variation in genetic markers is distributed
among geographic samples (Grosberg and Cunningham
2000, Hellberg et al. 2002). Four levels of genetic difter-
entiation are conventionally recognized: (1) fixed differ-
ences in allelic composition or reciprocal monophyly in
gene genealogies; (2) moderate differences in allele fre-
quencies or haplotypes; (3) slight but statistically signifi-
cant differences in genetic markers; and (4) no significant
differences. Fixed differences in allozyme alleles between
populations or reciprocal monophyly of DNA sequences
are considered evidence of a complete barrier to gene flow
that has persisted for at least thousands of years. Whether
or not such genetically isolated populations are viewed as
separate species can be influenced by previous taxonomic
work. For example, mitochondrial DNA and allozyme



frequency differences between the nominally conspecific
northeastern GMx and northwestern GMx populations of
the thalassinidean Callichirus islagrande are greater than
those between the brachyuran species Menippe adina and
M. mercenaria, although only the latter pair exhibits obvi-
ous phenotypic differences and formal taxonomic recog-
nition (Bert 1986, Williams and Felder 1986, Staton and
Felder 1995, Schneider-Broussard et al. 1998, Bilodeau,
Felder, and Neigel 2005).

Moderate differences in the frequencies of genetic
markers between populations are interpreted as evidence
of either a partial barrier to gene flow or an inconstant
barrier that may have recently formed or broken down;
although recent could mean many thousands of years.
Classical methods of data analysis cannot distinguish
these alternatives, although newer methods potentially
can (Knowles and Maddison 2002). Differences in the
frequencies of genetic markers that are slight but statisti-
cally significant are the most difficult to interpret. Much
depends on assumptions about the strength of genetic
drift, which has been a subject of broad speculation for
marine populations. If it is assumed that genetic drift is
weak because populations are very large (often the case
for marine species), then even a slight amount of genetic
differentiation implies that gene flow must also be very
weak not to have completely overcome genetic drift. This
leads to the interpretation that there is very little migra-
tion among the populations, because even low rates of
gene flow should be able to abolish any detectable levels of
differentiation. However, it is also conceivable that genetic
drift is in fact very strong in marine populations because
entire cohorts of recruits could be spawned by only a few
individuals, a scenario known as “sweepstakes reproduc-
tion” (Hedgecock 1994). In this view, low levels of genetic
differentiation imply that gene flow must be very strong to
overcome the strong genetic drift associated with sweep-
stakes reproduction, and this leads to the interpretation
that gene flow (and hence migration) is very high among
populations. An additional factor that is probably not con-
sidered often enough is the role of natural selection. Selec-
tion can either increase or decrease differentiation among
populations to any extent and at any scale. This lack of a
specific prediction has made it difficult to test hypotheses
based on selection and has caused some marine geneti-
cists to avoid giving it much consideration (Hellberg et al.
2002). From this discussion it should be evident that there
is a broad range of plausible interpretations for slight
genetic differentiation among marine populations.

Complete absence of genetic differentiation implies
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extensive gene flow, or panmixia, among populations.
However, the difference between finding slight differenti-
ation rather than no differentiation is often simply a mat-
ter of statistical power. For example, statistically signifi-
cant differences in genetic markers among populations
of Sciaenops ocellatus were found only when large sample
sizes and sufficiently polymorphic genetic markers were
surveyed (see list). Because many surveys have been lim-
ited in these respects it would be difficult to counter the
proposition that with large enough samples and suitable
genetic markers statistically significant geographic varia-
tion could be detected in any marine species. Thus, the
problem of interpreting slight genetic differentiation is
probably also relevant to cases in which no differentiation
hasbeen detected. In the list, 3 levels of genetic differentia-
tion are distinguished: no statistically significant differen-
tiation, differences in frequencies of genetic markers, and
fixed differences at some loci or reciprocal monophyly for
gene genealogies. No distinction is made between slight
and moderate differences in the frequencies of genetic
markers. This represents a compromise between the pro-
vision of what would be generally accepted as valid and
useful characterization of levels of genetic differentiation
and the ambiguities, discussed above, inherent in such
characterizations.

Biogeographic Context

The regional patterns of genetic variation that are detected
in studies of GMx species are usually interpreted in
terms of historical biogeography. There is an underlying
assumption that larger-scale patterns develop over lon-
ger periods of time and thus reflect deeper historical pro-
cesses. This assumption is supported by both population
genetics theory, which predicts that genetic drift takes
place more slowly in larger units of population structure
(Wright 1951), and by empirical evidence such as hier-
archically nested phylogeographic patterns (Neigel, Ball,
and Avise 1991).

Biogeographically, the GMx is part of a larger sys-
tem that includes the western Atlantic and Caribbean.
The northern GMx has been considered part of the
warm-temperate Carolinian Marine Province, which
also includes the northwestern Atlantic coast from Cape
Hatteras, North Carolina, to Cape Canaveral, Florida. In
contrast, the southern GMXx is tropical, and along with
the Caribbean is considered part of the Tropical North-
western Atlantic Province. The approximate boundar-
ies between warm-temperate and tropical conditions in
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the GMx are Cape Rojo, Mexico, to the west and Cape
Romano, Florida, to the east (Briggs 1974). The Caro-
linian Province is interrupted by the portion of the Flor-
ida peninsula that extends into tropical waters, and the
ranges of some Carolinian species are broken at this dis-
junction while other, more eurythermic species continue
through it. Another recognized biogeographic division
separates the northeastern GMx from the northwestern
GMzx, with the boundary placed at either the mouth of
the Mississippi River or at Mobile Bay, Alabama (Briggs
1974, McClure and McEachran 1992). Geologically, sedi-
ments in the northwestern GMx are predominately terri-
geneous, whereas those in the northeastern GMx are car-
bonate, with corresponding differences in the distribution
and types of benthic habitats and communities. This lon-
gitudinal division is reinforced by the outflows of the Mis-
sissippi and Atchafalaya rivers. Low salinity water loaded
with sediments and nutrients are carried by surface cur-
rents to the west during winter and to the east during
summer (Ohlmann and Niiler 2005). These river outflows
have dramatic effects on coastal habitats and disrupt the
ranges of some coastal species.

The GMx has had a relatively long and tectonically
stable history since its formation in the late Jurassic,
approximately 150 mybp. Geological, climatological, and
oceanographical changes that occurred during the Neo-
gene Period (23 my to present) are potential influences
on the generation of species diversity and the shaping of
genetic variation within species of the GMx. A singular
tectonic change that occurred during this period was the
emergence of the Central American Isthmus in the Plio-
cene, which closed the Tropical American Seaway that
connected the Pacific Ocean and the Caribbean Sea. The
closure severed biotic connections between the 2 basins
and profoundly altered patterns of oceanic circulation in
the Caribbean and GMx. Throughout the Neogene there
have been repeated cycles of glaciation, which altered sea
levels and climates and induced shifts in ranges that are
likely to have both fragmented species and brought pre-
viously isolated fragments back into contact. It can be
assumed that practically all GMx species have experienced
these effects because the most recent glacial period ended
just 12,000 years ago. Indeed, because there have been as
many as 15 glacial cycles during the Pleistocene, it is likely
that their effects on the biogeography of contemporary
species are compounded in ways that may be difficult to
unravel. Three vicariant mechanisms have received the
most attention: (1) the emergence of the Central Ameri-
can Isthmus; (2) the opening and closing of the Suwannee

straits across Florida; and (3) changes associated with gla-
cial cycles. These are each considered in detail below.

The Emergence of the Central American Isthmus

Paleontological records indicate that the emergence of
the Central American Isthmus began to alter patterns
of surface circulation, carbonate deposition, and evolu-
tion in the Caribbean Sea by the late Miocene (Collins,
Budd, and Coates 1996). Complete closure of the Tropi-
cal American Seaway between the Pacific Ocean and the
Caribbean Sea occurred in the mid-Pliocene, about 3.5
million years before the present (Keigwin 1982, Coates
et al. 1992). An important consequence was the redirec-
tion of the North Equatorial Current northward into the
Gulf Stream, through the Yucatan Straits and into the
GMx. The closure of the Tropical American Seaway was
a vicariant event that isolated populations of marine spe-
cies on either side of the Isthmus of Panama. Sister species
created by this event, referred to as geminate species, are
often used as standards for the estimation of the rate of
mitochondrial DNA sequence evolution. These estimates,
or “molecular clock calibrations,” can be used to date other
cladogenic events from mtDNA sequence data.
Suwannee Straits. In the mid-Miocene (Haq, Harden-
bol, and Vail 1987) and possibly the late Pliocene (Ward
and Strickland 1986), high sea levels created a deepwater
channel, the Okeefenokee Trough, which separated Flor-
ida from the mainland of North America. The Suwan-
nee straits flowed through this channel from the GMx
to the Atlantic (Olsen 1968, Brooks 1973, Riggs 1984). It
has been hypothesized that the Suwannee straits allowed
stone crabs (Menippe adina) from the GMx to migrate
through the Okeefenokee Trough and hybridize with
crabs of their sister species, M. mercenaria, on the Atlan-
tic coast (Bert and Harrison 1988). The existence of a rel-
ict hybrid zone would explain why crabs from the coast of
Georgia have some of the phenotypic characteristics and
allozyme allele frequencies that are otherwise character-
istic of M. adina from the GMx (Bert 1986). As a biogeo-
graphic scenario, introgression through the Okeefenokee
Trough requires that the 2 species of Menippe diverged
prior to the opening of the Suwannee straits and that the
hybrid population on the coast of Georgia has been iso-
lated from GMx M. adina since the closure of the straits.
These events would have occurred at least several mil-
lion years ago, a time scale that is amenable to testing by
molecular clock estimates of DNA sequence divergence
between the 2 nominal species and between M. adina in



the GMx and “adina-like” crabs from the putative relict
hybrid zone of the coast of Georgia. Based on an anal-
ysis of mitochondrial 16S ribosomal DNA sequences, the
estimated divergence times for both comparisons were
much less than predicted by the Suwannee straits hypoth-
esis. Indeed, M. adina and M. mercenaria appear to have
separated very recently, so much so that they share some
identical 16S haplotypes (as well as multiple nuclear DNA
markers; Schneider-Broussard et al. 1998).

The example of the stone crabs illustrates how a corre-
spondence between a genetic pattern and the location of a
known vicariant event can be misleading. For highly vagile
marine species, we should not expect to see the geographic
imprints of remote events to be preserved in their genetic
structures unless they are maintained by present day condi-
tions. For example, if a genetic break is found at the mouth
of the Mississippi River, we should not assume that the river
created the break. An alternative possibility is that 2 races
of the species were formed elsewhere in the past and subse-
quently shifted to their present day ranges. The river mouth
could now be acting as a barrier to dispersal or simply mark
the point at which a critical change in environmental con-
ditions occurs. The dating of cladogenic events by molecu-
lar clock estimates provides one means to test hypotheses
about cause and effect relationships between past geologi-
cal events and present day genetic structure.

The Florida Vicariant Zone

The pattern of genetic breaks associated with the interrup-
tion of the Carolinian Province in southern Florida is one
of the best-studied cases in the field of phylogeography
(Avise 1992, 2000). Pleistocene cycles of glaciation could
have caused repeated episodes of contact and separation
between GMx and Atlantic populations by at least 2 mech-
anisms (Avise 1992). First, glacial cooling would eliminate
the tropical zone in southern Florida and bring previously
allopatric populations from the 2 sides of the disjunction
into contact (Hedgepeth 1954). The second mechanism
would have the opposite effect of increasing isolation of
GMx and Atlantic populations of estuarine species dur-
ing glaciations. Drops in sea level would expose large areas
of the Florida and Yucatan peninsulas, and along with
decreased rainfall, could have eliminated estuarine habi-
tats that previously bridged the northern GMx and Atlan-
tic. These climate-induced events could have occurred as
recently as the most recent glaciation only 12,000 years
ago, or during any of the many other glaciations that
occurred during the Pleistocene, Pliocene, or Miocene.
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Genetic differentiation associated with the Florida dis-
juncture of the Carolinian Province has been found for
many species (see list). The amount of differentiation var-
ies from none to fixed allelic differences and/or recipro-
cal monophyly. Surprisingly, differentiation is found not
only in species with ranges that are broken by the disjunc-
ture but also in species with apparently continuous ranges
(Avise 1992, Cunningham and Collins 1998). Although
in some comparisons the extent of genetic differentia-
tion appears to be inversely related to dispersal ability, this
relationship fails to hold when more than a few species
are considered (Cunningham and Collins 1998, Gold and
Richardson 1998a). Molecular clock estimates indicate
that genetic breaks associated with the Carolinian dis-
juncture do not date to any single event, which is to be
expected given the cyclical nature of glacial effects. This
has led to the characterization of these congruent breaks
as a case of “pseudoconvergence” (P. Cunningham and
Collins 1994, C. Cunningham and Collins 1998).

A full explanation of any case of genetic divergence
between GMx and Atlantic populations must not only
account for its origins, but also its maintenance under
present conditions. High rates of gene flow for even a few
generations can eliminate genetic differentiation between
populations. It thus seems necessary that either oceano-
graphic barriers to dispersal or selection against migrants
(or hybrids) must be acting to maintain geographic varia-
tion. However, to determine which of these mechanisms
predominates has been very difficult. For example, within
the U.S. GMx the American oyster, Crassostrea virginica,
is divided into 2 distinct genetic units that are reciprocally
monophyletic for mtDNA (Reeb and Avise 1990) and
have fixed allelic differences for some nuclear DNA mark-
ers (Karl and Avise 1992, Hare and Avise 1998). These
genetic units meet at Cape Canaveral, Florida, where they
form a narrow hybrid zone. Detailed analysis of genetic
markers within this cline could not determine whether
it was maintained primarily by selection or by restricted
gene flow (Hare and Avise 1996).

A recent study demonstrates the importance of con-
sidering the Carolinian disjuncture in a regional context
that includes the tropical GMx and Caribbean. A survey
of genetic markers in the Brachidontes exustus (scorched
mussel) species complex throughout the GMx and Carib-
bean revealed that the genetic break associated with the
Carolinian disjuncture is just one of many regional dis-
junctions, and that northwestern Atlantic populations are
more closely related to some Caribbean populations than
to Carolinian populations in the GMx (Lee and O Foighil
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2005). Their findings led the authors of this study to sug-
gest that while the genetic units were created by past cla-
dogenic events, their present locations and maintenance
are controlled by postrecruitment selection rather than
oceanographic barriers to larval dispersal.

For some species, genetic differentiation has been
found within the GMx. Shifts in the frequencies of genetic
markers have been found to coincide with the mouth of
the Mississippi River; the Chenier Plains off the coast
Louisiana; Laguna Madre, Texas; and with single, anoma-
lous populations (see list). Temporal variation in allele fre-
quencies has also been observed (e.g., McMillen-Jackson,
Bert, and Steele 1994) and in one widely cited case greatly
exceeded the magnitude of geographic variation in allele
frequencies (Kordos and Burton 1993). These intriguing
phenomena suggest that gene flow within the GMx is not
always strong enough to overcome both genetic drift and
natural selection. Limited gene flow is also suggested by a
study that found significant differentiation among micro-
satellite allele frequencies in the ghost shrimp Callichirus
islagrande among locations on a geographic scale of just
tens of kilometers (Bilodeau, Felder, and Neigel 2005).

In conclusion, genetic surveys of the species of the
GMx have revealed patterns of geographic differentia-
tion that are not fully understood but seem to suggest the
action of several factors that include past isolation, barri-
ers to dispersal, and natural selection. The very existence
of these patterns could be considered remarkable because
of the potential for planktonic larval dispersal to affect
high levels of gene flow. The challenge now is to determine
the relative importance and role of each of the forces that
shape patterns of geographic differentiation in the GMx
and to apply this new understanding to basic questions
about the evolution of marine species as well as to fisher-
ies management and the conservation of biodiversity.

Abbreviations

Abbreviations used in column headers of the list of pop-
ulation genetic surveys are as follows: Allo = number of
polymorphic allozyme loci; Caribb = Caribbean; GMx/
Atl = between Gulf of Mexico and Atlantic; w/GMx =
among populations within Gulf of Mexico; Msat = mic-
rosatellite; mtDNA = mitochondrial DNA; nucDNA =
nuclear DNA; NW Atl = northwest Atlantic; Other = other
genetic markers; Ref = reference. Abbreviations used in
columns are as follows: AI = actin gene intron; ANON =
anonymous locus; BIN = bindin gene; CI = calmodulin
intron; COI = cytochrome oxidase subunit I gene; CR =

control region; HC = hemocyanin protein polymorphism;
ITS = ribosomal internal transcribed spacer; LDH = lac-
tate dehydrogenase; ND4 = mitochondrial NADH dehy-
drogenase subunit 4; PCR-RFLP = restriction fragment
polymorphism within DNA amplified by the polymerase
chain reaction; rbcl = ribulose-biphosphate carboxylase;
RFLP = restriction fragment polymorphism; SEQ = DNA
sequence; Y = yes; N = no; NA = not available; 0 = no sta-
tistically significant difference; 1 = difference in frequen-
cies of markers; 2 = fixed allelic differences or reciprocal
monophyly of sequences; 16S = large subunit ribosomal
RNA gene; 28S = 28S ribosomal RNA gene. Numbers in
“Markers” columns denote number of marker loci. Italic
numbers refer to numbered references; superscripts refer
to endnotes at end of table.
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