Annotation Pipeline for Blue Crab Transcriptome Sequences
J. Neigel May 31, 2016
Background:
After frustration with Blast2GO (too slow, too buggy, etc.), we developed our own annotation pipeline that uses local copies of databases, multithreaded blast searches and more control over how annotations are found and managed. One design goal has been to group genes into a few higher-level GO categories for comparisons among categories (e.g. compare FST and gene-environment correlation among functional groups).

In Brief:
Given a list of ids for transcriptome sequences or components:
	1) Find the longest component for each sequence.
2) Retrieve the longest components of each sequence from the transcriptome FASTA file.
3) Blastx each sequence against UniProt, save hits.
4) Find GO terms corresponding to hits in UniProt.
5) Find all higher level (isa) GO terms for GO terms from hits.
6) Identify higher-level GO terms that can be used to group sequences into a small number of sets with an even distribution of sequences among those sets.

Inputs:
1) A text file with list of sequences id’s of sequences or components to annotate (e.g. components_SNP_assay_list.txt).
2) FASTA file with transcriptome assembly (CsapTrinityAsm2.fasta)
3) UniProt sequence files (uniprot_sprot.fasta and uniprot_trembl.fasta)
4) File of associations between UniProt entries and GO terms (gene_association.goa_uniprot)
5) File that provides namespace, description and isa terms for each GO term ID (goTerms.txt)

Step-By-Step:

1) Find longest sequences for each selected component

Not strictly necessary, but longer sequences are better for Blast searches.
Run Perl script selectPickLongest.pl, which takes a list of selected sequences (e.g. components_SNP_assay_list.txt) and outputs a file (e.g. selectToBlast.txt) with a table of the ids of the longest sequences for each corresponding components along with the length of those sequences (one sequence per row, id and length separated by a tab).

2) Make blastable databases from UniProt fasta files

Blast searches work best with blast databases (rather than FASTA files).
Put files uniprot_sprot.fasta and uniprot_trembl.fasta into a otherwise empty folder, run the Perl script makeNewDB.pl, which requires the blast+ utility program makeblastdb (should be in PATH in BioLinux). This will generate a Blast databases for both FASTA files.

3) Expand GO terms to include all parent terms

The file goTerms.txt is a tab-delimited table with GO term id#, GO term namespace, description, and then a list of indeterminate length of “isa” terms. These isa terms appear to be limited to immediate parent terms. To meet the design goals of our pipeline, a new file expandedGOterms.txt is generated, in which all higher-level isa terms are listed for each GO term.
Run Perl script expandGO.pl, input file is goTerms.txt, output file is expandedGOterms.txt.

4) Run Blastx searches

Blastx translates each query DNA sequence into all 6 reading frames and blastx’s them against amino acid sequences in UniProt. Preference should be given to hits from SwissProt, the smaller, curated subset of UniProt, versus TrEMBL, which is larger and uncurated.

Run selectProtBlast.pl, preferably on a workstation with a large number of CPU cores.
The input file is the output file from selectPickLongest.pl (e.g. selectToBlast.txt)
The values of $db1, $db2 and $assembly should be paths to the blastable databases uniprot_sprot, uniprot_trembl and the transcriptome FASTA file CsapTrinityAsm2.fasta. The output file (e.g. components_SNP_assay_hits.txt) consists of the top Blastx hit for each query sequence in the “format 6” of the blast format, which is a tabular format with one line per hit, and the following fields:

qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore

For example:

comp4115_c0_seq1	sp|P05202|AATM_MOUSE	71.429	399	114	0	220	1416	32	430	0.0	616

For maximum use of multi-core CPU’s, in the line:

system ("blastx -query tempIn -db $db2 -out tmpOut $outFormat -num_threads 40");

Set the value of -num_threads to the maximum number of threads that can be run on the CPU. For a quad core computer with hyperthreading this is 8, for a 20-core/hyperthreading monster like Bete, this is 40.

5) Find annotations

The id’s for GO terms associated with sequences in databases are found in gene association files. For UniProt, the file gene_association.goa_uniprot is very large (about 50 GB), so it is not practical to parse the entire file into a hash that can be used to look up GO term id’s with UniProt id’s as keys. However, the entries are alphabetical by accession, so it is possible to search for a particular UniProt entry with a “divide-and-conquer” strategy. Using the function seek to randomly access positions within the file, lines are sampled at regularly spaced positions (5GB apart) to “bracket” the targeted accession. The sampling interval is then decreased by a factor of 10, and lines are again sampled within the bracket to define a smaller bracket for the targeted accession. This process of progressively narrowing the location of the target accession is repeated through 6 iterations, after which the final bracket is searched line-by-line until the first occurrence of the targeted accession if found. In general, a block of multiple lines match the targeted accession, so each successive matching line is parsed to collect all of the associated GO terms id’s. A list of all GO id’s associated with each transcriptome sequence is generated as a hash-of-hashes.

%compToGOID {component ID} {GO ID} = number of occurrences

For each GO term id in this hash, all of the isa’s are found by looking up the GO id in the hash generated by parsing the file expandedGOterms.txt that was generated in step 3.

%GOTerms {GO ID} {‘isas’}

These isa terms are then used to create a hash for all the GO terms associated with each component

%compToGOIDwIsas {component ID} {GO ID} = number of occurrences

After GO terms have been found for all sequences in the input file, a reverse hash is made:

%GOIDtoComp {GO ID} {component ID} = number of occurrences

From these hashes, four output files are written:

i) $compsToGOFile (compsToExpandedGO.txt)

tab-delimited file with GO ID’s and descriptions, one GO ID per line, first 3 lines:

10046_c0	0000287	magnesium ion binding
10046_c0	0003674	molecular_function
10046_c0	0003676	nucleic acid binding

ii) $GoToCompsFile (expandedGOtoComps.txt)

tab-delimited file with GO ID, GO term description, then list of components that matched, first 3 lines:

0000002	mitochondrial genome maintenance	23189_c0	9425_c0
0000003	reproduction	23363_c0
0000009	alpha-1,6-mannosyltransferase activity	6009_c0

iii) $sortedGOtoCompsFile (sortedGOtoComps.txt)

tab-delimited file, GO ID, GO namespace, number of GO ids with isa relationship to GO term, namespace, list of components; filtered to include only terms in the biological_process namespace. First 3 lines:

0008150	biological_process	1316	biological_process	10046_c0	10138_c0…	10276_c00
009987	biological_process	1035	cellular process	10046_c0	10138_c0	10197_c0…
0044699	biological_process	907	single-organism process	10197_c0	10276_c0	10289_c0…
	
iv) $distributionFile (termFrequencies.txt)

[bookmark: _GoBack]tab-delimited file that shows the distribution of GO terms with respect to how many components were associated with them. The cumulative distribution is shown, so in the output shown below, there are three GO terms that represent 907 or more GO terms. Here are the first 10 lines of the file:

# Occurrences	N terms >=
1316	1
1035	2
907	3
868	4
776	5
745	6
735	7
728	8
654	9

3 | Page

